
Practical Signing-Right Revocation?

Michael Till Beck1, Stephan Krenn2, Franz-Stefan Preiss3, and Kai Samelin3,4

1 Ludwig-Maximilians-Universität München, Munich, Germany
michael.beck@ifi.lmu.de

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

3 IBM Research – Zurich, Rüschlikon, Switzerland
{frp,ksa}@zurich.ibm.com

4 Technische Universität Darmstadt, Darmstadt, Germany

Abstract. One of the key features that must be supported by every
modern PKI is an efficient way to determine (at verification) whether the
signing key had been revoked. In most solutions, the verifier periodically
contacts the certificate authority (CA) to obtain a list of blacklisted, or
whitelisted, certificates. In the worst case this has to be done for every
signature verification. Besides the computational costs of verification,
after revocation all signatures under the revoked key become invalid.
In the solution by Boneh et al. at USENIX ’01, the CA holds a share
of the private signing key and contributes to the signature generation.
After revocation, the CA simply denies its participation in the interactive
signing protocol. Thus, the revoked user can no longer generate valid
signatures. We extend this solution to also cover privacy, non-trusted
setups, and time-stamps. We give a formal definitional framework, and
provide elegantly simple, yet provably secure, instantiations from efficient
standard building blocks such as digital signatures, commitments, and
partially blind signatures. Finally, we provide extensions to our scheme.

Changes to Prior Version. Clearly, in the privacy games the adversary’s chance
of success needs to negligibly close to 1

2 , and not 0. This was only a typo, and
has no impact on the schemes, games, or proofs.

1 Introduction

Digital signatures [24] provide meaningful security as long as the signing key
stays secret. However, in the real-world, signing keys can be compromised very
easily, e.g., through hacker attacks, lost hardware tokens, or simply by accident.
Furthermore, it is often required to revoke signing rights, e.g., when an em-
ployee leaves a company. Consequently, deployed solutions such as X.509, and
related standards, always allow for revocation of certificates [12, 19]. Here, two
main approaches (and potentially combinations thereof) are deployed. First, in

?This work was supported by the European Commission through grant agreement
numbers 321310 (PERCY), 644962 (PRISMACLOUD), and 653454 (CREDENTIAL).

a white-list approach, the certificate authority (CA) vouches for the fact that
a given certificate is not revoked. Alternatively, the CA can publish a black-list
containing all revoked certificates. Now, a verifier directly rejects a signature if
the used key has been black-listed. Thus, if one requires up-to-date information,
this means that the lists must be retrieved for every signature verification, caus-
ing a high — and sometimes too high — computational and communicational
overhead. Thus, in either case, the verifiers contact the CA to determine whether
a given certificate is still valid. Thus, every verifier must periodically update the
published lists in both approaches to have meaningful security guarantees.

Moreover, as noted by Boneh et al. [9], these total revocation mechanisms
have several drawbacks. For example, as mentioned previously, to check the
revocation status of a given certificate, the verifier must have access to an up-
to-date certificate revocation list (CRL), or the CA has to be queried for each
signature verification. The latter may not be possible, however, as the verifier
may not have a network connection, or communication is too costly. Furthermore,
if a certificate is revoked, all signatures corresponding to the contained public
key pk, including the ones that were generated honestly, become invalid after
revocation. However, it is desirable that all signatures under a secret key sk that
were generated prior to the corruption of sk (or prior to the revocation of the
corresponding certificate) remain valid, while the generation of new signatures
under sk is not possible. For example, consider Spider-Man sending the message
m=“I admit that you, Iron Man, are more powerful than me.”1 Clearly, if m
is signed with Spider-Man’s secret key sk, Iron Man can publish the signature
to prove to the public that he is more powerful than Spider-Man. However, if
Spider-Man revokes his certificate, the signature becomes invalid, and there is
no way for Iron Man to prove that the statement is valid. This is because if
the secret key sk is corrupted, it cannot be proven that Iron Man is not the
adversarial party generating new bogus signatures on behalf of Spider-Man. The
problem is that signatures are not associated with their generation time, i.e., a
new signature is as good as an old one, if no further means such as time-stamping
services are involved. Thus, all signatures have to be revoked in this setting. Refer
to Gutmann for additional problems of PKIs in their current form [25].

Our Contribution. We address the aforementioned unsatisfactory situation by
introducing the notion of CA-assisted signature generation with time-stamping,
message privacy, and non-trusted setup. In a nutshell, our scheme requires that
a partially trusted CA blindly signs the message m in question plus potentially a
time-stamp (and some other technical values such as keys, etc.), while a trusted
setup is not required. In particular, the CA checks whether the corresponding
user’s pk is revoked, and signs m only if pk not revoked. The signature generated
by the CA is then additionally signed with a standard digital signature scheme
by the user. Both signatures are subsequently sent to, and verified, by the veri-
fier. Signatures can be generated as long as the corresponding public key is not

1 For all Spider-Man fans: please reverse the roles of Spider-Man and Iron Man.

Key Pair
Generation

Time
Corruption Revocation

Revoked Signatures
Current PKI

Signature Generation Denial of Generation

Fig. 1. Revocation of Certificates.

revoked. Therefore, all generated signatures remain valid after revocation as the
CA simply stops assisting the signer after the key gets revoked.

While technically being relatively simple, our construction solves most of
the mentioned problems, and, interestingly enough, is even more efficient than
most deployed solutions, as the CAs are no longer queried for each verification.
Moreover, we want that our solution can be added “on-top” of the existing PKI,
i.e., the users do not require new keys, while the existing method can co-exist.
If a time-stamping authority and traditional revocation lists are naïvely used
to solve the problem, the signing process needs to be interactive similar to our
construction (because the time-stamp needs to be bound to the signed message).
However, our solution does not require any interactivity upon verification, which
is needed in the naïve solution in order to update revocation information. More-
over, our construction paradigm is elegantly simple, yet versatile. We show how
it can easily be extended to cover additional application scenarios. Interestingly,
when one tries to close the remaining gap between corruption and revocation
(cf. Fig. 1), the resulting construction becomes very similar to the naïve solution
again (cf. Sect. 4.1). However, in this case it is easy to see that interactivity
is needed for signing (because of the time-stamp) as well as for verification (to
check whether a signature key has been revoked “into the past”).

Even though the CA is only partially trusted, we do not lose anything, as
some kind of trust anchor is always required for a PKI anyway. Our approach
actually requires less trust: for white-lists, the CA learns if signatures for a
specific public key are verified, while in a black-list approach everyone sees which
certificates are revoked. In our solution, the CA only learns when a signature
is generated, which happens less frequently. Morever, we have a fall-back mode,
which allows to revert to standard signatures.

State-of-the-Art. The idea to let a (semi-)trusted entity such as a CA also
contribute to signature generation has been introduced by Boneh et al. [9] and
Rivest [34], but neither present a formalization. The approach by Boneh et al. is
based on standard 2-out-of-2 threshold signatures [8, 21]. In particular, the secret
key sk is split between the CA and the signer. The server denies its contribution
to signature generation, if the presented certificate is marked as revoked. How-
ever, their approach requires trusted setup (the suggested mitigation strategy

of using a distributed key generation algorithm here is too inefficient in prac-
tice), new keys for each participant, and cannot add time-stamps to generated
signatures. Moreover, an adversarial server may also learn the message to be
signed, i.e., in contrast to our solution no privacy guarantees are given to the
user. A similar approach is deployed in anonymous credentials such as Identity
Mixer [12, 16], where the credential holder proves that it is not revoked at presen-
tation of the credential, e.g., using accumulators [6, 13, 20, 33]. Here, the prover
has to prove knowledge of a witness (in zero-knowledge) such that its revocation
handle is contained in the accumulator, which resembles a white-list approach.
Clearly, the witnesses have to be updated for each revocation, while credentials
are, compared to digital signatures, only valid once at presentation.

Blind signatures have been introduced by Chaum [17]. In a nutshell, blind
signatures allow an external entity to receive a signature σ on a messagem (of its
own choice) such that the signer learns nothing about the messagem, and cannot
link a signing transcript to the final signature. Chaum’s work was later formalized
and proven secure [4, 27]. Later, constructions in the standard model [14], based
on different assumptions other than RSA [8], additional security guarantees [22],
but also some impossibility results were published [23]. The initial idea was also
extended to cover some form of partial blindness, where the signature is issued
on the blinded message m, but also some public information info known to both
parties [1, 18]. These partially blind signatures are mostly used to prevent misuse
of blind signatures. We use this possibility to bind a signature to a public key,
and add time-stamps.

There is also the notion of certificate-less cryptography [2, 26]. In our case
we only require a certificate, there are no ephemeral keys, and no identity man-
agement. However, the ideas are very similar, and can thus be seen as related.
Likewise, the concept of virtual smart cards [15] is related. However, in contrast
to our approach, the additional server is not trusted by outsiders and the signer
has to provide an additional password. Moreover, for an outsider (i.e., verifier), a
signature generated with their scheme is indistinguishable from a traditional sig-
nature. This is not what we want, i.e., a verifier must be able to decide whether
a signature was generated using out method.

There are also other primitives which may be used in our context, e.g., thresh-
old signatures [21], proxy signatures [29], server-assisted signatures [7], multi sig-
natures [5], aggregate signatures [10], or sanitizable signatures [3, 11, 28]. How-
ever, all these approaches do not offer privacy (i.e., they reveal the message to
the server) without further modifications. We therefore chose to use primitives
which directly give us the required guarantees.

2 Preliminaries and Building Blocks

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly
take 1λ as an additional input. We write a ← A(x) if a is assigned the output
of algorithm A with input x. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. The algorithms may return a

special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. For the remainder of
this paper, all algorithms are ppt if not explicitly mentioned otherwise. If we have
a list, we require that we have an injective, and efficiently reversible encoding
mapping the list to {0, 1}∗. If we have a set S, we assume a lexicographical
ordering on the elements. A message space M, and the randomness space R,
may implicitly depend on a corresponding public key. If not otherwise stated, we
assume that M = {0, 1}∗ to reduce unhelpful boilerplate notation. A function
ν : N → [0, 1] is negligible, if it vanishes faster than every inverse polynomial,
i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0.

Non-Interactive Commitments. Non-interactive commitment schemes allow
one party to commit itself to a value without revealing it. Later, the committing
party can give some opening information to the receiver, which can then “open”
the commitment.

Definition 1 (Non-Interactive Commitments). A non-interactive commit-
ment scheme COM consists of three ppt algorithms {ParGen,Commit,Open}, such
that:

ParGen. This algorithm takes as input a security parameter λ and outputs the
public parameters pp, i.e., pp← ParGen(1λ).

Commit. This algorithm takes as input a message m and outputs a commit-
ment C together with corresponding opening information O, i.e., (C,O) ←
Commit(pp,m).

Open. This deterministic algorithm takes as input a commitment C with cor-
responding opening information O and outputs message m ∈ M, i.e.,
m← Open(pp, C,O).

Definition 2 (Binding). A non-interactive commitment scheme is binding, if
for all ppt adversaries A there is a negligible function ν(·) such that

Pr
[

pp← ParGen(1λ), (C∗, O∗, O′∗)← A(pp),m← Open(pp, C∗, O∗),
m′ ← Open(pp, C∗, O′∗) : m 6= m′ ∧ m 6= ⊥ ∧ m′ 6= ⊥

]
≤ ν(λ).

Definition 3 (Perfectly Hiding). A non-interactive commitment scheme is
perfectly hiding, if for all unbounded adversaries A we have

Pr

 (pp,m0,m1, state)← A(1λ), b← {0, 1},
(C,O)← Commit(pp,mb), b∗ ← A(C, state) :

b = b∗

− 1
2 = 0.

We say that a commitment scheme COM is correct, if for all λ ∈ N, all
pp ← ParGen(1λ), for all messages m, for all (C,O) ← Commit(pp,m), we have
Open(pp, C,O) = m.

A non-interactive commitment scheme COM is secure, if it is correct, bind-
ing, and perfectly hiding. An example for such a commitment-scheme are
Pedersen-Commitments [32]. We stress that the message space of the Pedersen-
Commitments can be extended using collision-resistant hash-functions.

Experiment eUNF− CMADSIG
A (λ)

(sk, pk)← KGen(1λ)
Q ← ∅
(m∗, σ∗)← ASign′(sk,·)(pk)
where oracle Sign′ on input m:
set Q ← Q∪ {m}
return σ ← Sign(sk,m)

return 1, if Verify(pk,m∗, σ∗) = true ∧ m∗ /∈ Q
return 0

Fig. 2. Unforgeability

Digital Signatures. Digital signatures allow the holder of a secret key sk to sign
a message m, while with knowledge of the corresponding public key pk everyone
can verify whether a given signature was actually endorsed by the signer.

Definition 4 (Digital Signatures). A standard digital signature scheme DSIG
consists of three algorithms {KGen,Sign,Verify} such that:

KGen. The algorithm KGen outputs the public and private key of the signer,
where λ is the security parameter: (pk, sk)← KGen(1λ).

Sign. The algorithm Sign gets as input the secret key sk, and the message m ∈M
to sign. It outputs a signature σ ← Sign(sk,m).

Verify. The algorithm Verify outputs a decision bit d ∈ {false, true}, indicating
if the signature σ is valid, w.r.t. pk, and m: d← Verify(pk,m, σ).

For each DSIG we require the correctness properties to hold. In particular,
we require that for all λ ∈ N, for all (pk, sk)← KGen(1λ), for all m ∈M we have
Verify(pk,m,Sign(sk,m)) = true. This definition captures perfect correctness.

Unforgeability. Now, we define unforgeability of digital signature schemes, as
given in [24]. In a nutshell, we require that an adversary A cannot (except with
negligible probability) come up with a signature σ∗ for a new message m∗. The
adversary A can adaptively query for signatures on messages of its own choice.

Definition 5 (Unforgeability). A signature scheme DSIG is unforgeable,
if for any ppt adversary A there exists a negligible function ν such that
Pr[eUNF− CMADSIG

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted
in Fig. 2.

We call a digital signature scheme DSIG secure, if it is correct, and unforgeable.

Partially Blind Signatures. Blind Signatures [17, 27] allow the holder of a
secret key to sign a message m for a second entity. The signer does not learn
what message it signs, and also cannot link a signature generation transcript
against the final signature. Partially Blind Signatures [1] also allow to add some
piece of “public” information, known to both parties, to the final signature. Note,
for the following definition, we omit the case where some “public parameters”
are generated, as it depends on the underlying scheme whether this algorithm is
required. An extension is straightforward.

Definition 6 (Partially Blind Signatures). A partially blind signature
scheme BSIG consists of two algorithms {KGen,Verify), and an interactive pro-
tocol 〈B,U〉 such that:

KGen. The algorithm KGen outputs the public and private key of the signer,
where λ is the security parameter: (pk, sk)← KGen(1λ).

〈B,U〉. The algorithm 〈B,U〉 is interactive. The user U receives input m, pub-
lic information info, and pk. The signer B inputs the secret key sk, and
some string info, while the user U inputs a public key pk, a message
m, and the string info. At the end of the protocol, only the user U re-
ceives a signature σ, while B receives nothing. We denote this as (⊥, σ) ←
〈B(sk, info),U(pk,m, info)〉. We write 〈·,U(·, ·, ·)〉∞ if the adversary plays the
role of the signer B, can start a new signing session with U as often as it
wants to, and can arbitrarily schedule the interactions. Likewise, if we write
〈B(·, ·), ·〉1, the adversary acts as the user, and can interact with the signer
only once. We also require that every entity is able to decide to what step
of which “session” a given protocol message corresponds, and also when a
given “signing session” is finished, and was successful. In particular, we say
a signing session is finished once B sends its last message to U , and U can
actually extract a valid signature.

Verify. The algorithm Verify outputs a decision bit d ∈ {false, true}, in-
dicating the validness of the signature σ, w.r.t. pk, info, and m: d ←
Verify(pk,m, info, σ).

For each BSIG we require the correctness properties to hold. In particular,
we require that for all λ ∈ N, for all (pk, sk) ← KGen(1λ), for all m ∈ M, for
all info ← {0, 1}∗ we have Verify(pk,m, info, σ) = true, where σ is taken from
(⊥, σ)← 〈B(sk, info),U(pk,m, info)〉. This captures perfect correctness.

We now introduce the security requirements needed for our construction.

Unforgeability. Now, we define unforgeability of partially blind signature
schemes, as given in [1, 31], but adjusted for our notation. In a nutshell, we
require that an adversary A cannot (except with negligible probability) come
up with more signatures for different message/information pair (m, info) than
successful, i.e., completed, signing queries. Note, the adversary can interleave
signing queries.

Experiment omUNF− CMABSIG
A (λ)

(sk, pk)← KGen(1λ)
((m1, σ1, info1), . . . , (m`, σ`, info`))← A〈B(sk,·,·),·〉∞(pk)
return 1, if ∀i ∈ {1, 2, . . . , `} : Verify(pk,mi, infoi, σi) = true
and oracle 〈B(sk, ·), ·〉 finished less than ` times, and
all (mi, infoi) are pairwise distinct

return 0

Fig. 3. Unforgeability

Experiment BlindnessBSIG
A (λ)

(pk∗, {m0,m1}, info, state1)← A(1λ)
b← {0, 1}
state2 ← A〈·,U0(pk∗,mb,info)〉1,〈·,U1(pk∗,m1−b,info)〉1 (state1)
let σ0, and σ1 denote the output of U0, and U1
If σ0 = ⊥ ∨ σ1 = ⊥, let σ ← ⊥
Else, set σ ← (σb, σ1−b)
a← A(state2, σ)
return 1, if a = b
return 0

Fig. 4. Blindness

Definition 7 (Unforgeability). A signature scheme BSIG is unforgeable,
if for any ppt adversary A there exists a negligible function ν such that
Pr[omUNF− CMABSIG

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is de-
picted in Fig. 3.

Note, we define “weak” unforgeability, i.e., once a signature for a given mes-
sage/information pair (m, info) becomes known, the adversary may be able to
derive new signatures.

Blindness. Now, we define blindness of partially blind signature schemes, derived
from [31]. In a nutshell, we require that an adversary A cannot (except with
negligible probability) decide what message is signed, and cannot link a signing
transsript against the final signature. This must even be true, if it can generate
the public key, chose the messages to be signed, and also the public string info.

Definition 8 (Blindness). A partially blind signature scheme BSIG is blind,
if for any ppt adversary A there exists a negligible function ν such that∣∣∣Pr[BlindnessBSIG

A (1λ) = 1]− 1
2

∣∣∣ ≤ ν(λ). The corresponding experiment is de-
picted in Fig. 4.

We call a partially blind signature scheme BSIG secure, if it is correct, un-
forgeable, and blind. Jumping ahead, we use the public information to embed
the current time-stamp, and the signer’s public key into the signature.

3 CA-Assisted Signatures

We now introduce CA-Assisted Signatures. As already discussed in the intro-
duction, the main idea is that a CA helps generating a signature.

3.1 Syntax

In the following we now give a formal specification of the algorithms and their
interfaces in such schemes. We require that each party has access to a common
clock which is synchronized across all parties. In practice, this can be realized,
e.g., by using the Network Time Protocol [30], and checking that the time-stamp
is in an acceptable range, say, e.g., 30 seconds.

Definition 9 (CA-Assisted Signatures). A CA-assisted digital signature
scheme CASIG consists of four algorithms {KGenu,KGenc,Revoke,Verify} and
one interactive protocol 〈CA,U〉 such that:

KGenu. The algorithm KGenu outputs the public and private key of each user,
where λ is the security parameter: (pku, sku)← KGen(1λ).

KGenc. The algorithm KGenc outputs the public and private key of a CA, where
λ is the security parameter: (pkc, skc)← KGen(1λ).

〈CA,U〉. The protocol 〈CA,U〉 is interactive. The user U receives input m,
pks, time, and sku. The CA inputs the secret key skc, time, and pku. At
the end of the protocol, only the user U receives a signature σ (which
may be ⊥ for a revoked user), while CA receives nothing: (⊥, σ) ←
〈CA(sks, pku, time)),U(sku, pku,m, time)〉. As for partially blind signatures,
we assume that each party knows to which signing session, and which protocol
step a received message belongs to, and is successful.

Revoke. The algorithm Revoke allows to revoke a given public key pku. In a
nutshell, the CA no longer agrees to start a signing protocol for revoked pku.
Thus, revocation of a pku does not affect already ongoing signing sessions
for this pku. This algorithm outputs nothing.

Verify. The algorithm Verify outputs a decision bit d ∈ {false, true}, indicating
the validness of the signature σ, with respect to pkc, pks, time, and m: d←
Verify(pkc, pku,m, time, σ).

3.2 Definitional Framework for CA-Assisted Signatures

We now define the formal requirements for CA-assisted signatures. In a nut-
shell, those are correctness, unforgeability against malicious users and CAs, and
blindness/privacy against CAs and outsiders.

Correctness. As usual, we require correctness of any CASIG. In particular, we re-
quire that with overwhelming probability in the security parameter it holds that
Verify(pkc, pku,m, time, σ) = true, where (pku, sku) ← KGenu(1λ), (pkc, skc) ←
KGenc(1λ),m ∈M, time ∈ N, (⊥, σ)← 〈CA(skc, pks, time),U(sks, pku,m, time)〉,
and pku was not revoked before the signature generation request. The probability
space is here given by all random coins in all involved algorithms. The scheme
is said to be perfectly correct, if σ verifies correctly with probability 1.

Unforgeability. Unforgeability of CA-assisted signatures covers two aspects. On
the one hand, a malicious user must not be able to fake signatures of the CA.
On the other hand, a malicious CA must not be able to impersonate a user.
Together, those two definitions clearly also imply that an outsider is not able to
forge any valid signatures.

For signer unforgeability, we allow an adversary to obtain arbitrarily many
signatures on arbitrary messages, and public keys, of its choice. Furthermore,
for every signature, the adversary may define the current time (except that it
may not turn back the time). Also, he can generate and revoke user keys at
convenience. Similarly to Def. 7, the adversary now wins if it can output more
message/signature pairs than he queried from the oracle; furthermore, each of
those pairs must only verify for a public key and time that have been used in
a signing query. Finally, signatures may only verify if the corresponding user
public key has not been revoked before starting the respective signing session.
For simplicity, we define that if a signing oracle is tagged as “non-called”, if
the corresponding public key was revoked before the current time. In the case
that revocation and signing were done at the very same point in time, we do not
consider the signature a forgery even if the revocation request was submitted first
in the experiment; one the one hand, this is a purely academic issue anyways,
and on the other hand “before” and “after” do not have any semantics within a
fixed point in time.

Definition 10 (Signer Unforgeability). A CA-assisted signature scheme
CASIG is signer unforgeable, if for any ppt adversary A there exists a negligible
function ν such that Pr[seUNF− CMACASIG

A (1λ) = 1] ≤ ν(λ). The corresponding
experiment is depicted in Fig. 5.

Complementary to signer unforgeability, we also require that the CA cannot
generate valid signatures for a specific user without its contribution. We therefore
let the adversary (controlling the CA) obtain arbitrarily many signatures for a
user public key pku, where again A has full control over time. The adversary
now wins if he can output a signature on a message that was not asked for that
specific define point in time. This definition is similar to the standard definition
of unforgeability, cf. Def. 5.

Note that as before, the adversary is allowed to interleave signing queries.
Further note that the given definition is only presented in its weak formula-
tion, i.e., the adversary is allowed to output fresh signatures for message/time

Experiment seUNF− CMACASIG
A (λ)

(skc, pkc)← KGenc(1λ)
time← 0
((m1, σ`, time1, pk1), . . . , (m`, σ`, time`, pk`))← A〈CA(skc,·,time),·〉∞,Timestamp(·),Revoke(·)(pkc)
where oracle Timestamp on input time′:
if time′ ≤ time, ignore
let time← time′

return 1, if ∀i ∈ {1, 2, . . . , `} : Verify(pkc, pki,mi, timei, σi) = true
and oracle 〈CA(sk, ·, ·), ·〉 finished less than ` times, and
all (mi, timei, pki) are pairwise distinct

return 1, if Verify(pkc, pk1,m1, time1, σ1) = true,
and pk1 was revoked before time1

return 0

Fig. 5. Signer Unforgeability

Experiment ceUNF− CMACASIG
A (λ)

(sku, pku)← KGenu(1λ)
time← 0
(m∗, σ∗, time∗, pk∗)← A〈·,U(sku,·,·,time)〉∞,Timestamp(·)(pku)
where oracle Timestamp on input time′:
if time′ ≤ time, ignore
let time← time′

return 1, if Verify(pk∗, pku,m∗, time∗, σ∗) = true,
and oracle 〈·,U(sku, ·, ·, ·)〉 was never queried for (pk∗,m∗, time∗).

return 0

Fig. 6. CA Unforgeability

pairs for which it obtained honest signatures. Extending the definition to strong
unforgeability is straightforward.

Definition 11 (CA Unforgeability). A CA-assisted signature scheme CASIG
is CA unforgeable, if for any ppt adversary A there exists a negligible function ν
such that Pr[ceUNF− CMACASIG

A (1λ) = 1] ≤ ν(λ). The corresponding experiment
is depicted in Fig. 6.

Blindness. Blindness is concerned with the privacy of the user towards the CA.
While a secure CA-assisted signature scheme must satisfy both aspects of un-
forgeability, blindness comes in two flavors giving different privacy guarantees.

Experiment CA− BlindnessCASIG
A (λ)

(sku, pku)← KGenu(1λ)
(pk∗, {m0,m1}, time, state1)← A(pku)
b← {0, 1}
state2 ← A〈·,U0(sku,pk∗,mb,time)〉1,〈·,U1(sku,pk∗,m1−b,time)〉1,Revoke(·)(state1)
let σ0, and σ1 denote the output of U0, and U1.
If σ0 = ⊥ ∨ σ1 = ⊥, let σ ← ⊥.
Else, set σ ← (σb, σb−1)
a← A(state2, σ)
return 1, if a = b
return 0

Fig. 7. CA Blindness

The first flavor, called CA blindness, is similar in spirit to Def. 8. There, the
CA (controlled by the adversary) may trigger signing protocols on two messages
of its choice in a random order, gets the resulting signatures, and then needs to
link the transcripts to the messages.

In the second flavor, called CA weak-blindness, we only require that the
adversary does not learn which message it signed. In particular, the adversary
does not gain access to the signatures, and may only trigger a single signing
query. It is easy to see that CA blindness implies CA weak-blindness, but not
vice versa. The decision which level of blindness/privacy is required must be
made on a case-to-case basis, depending on the concrete use case.

Similar to Def. 8, the adversary is restricted to a single interaction with each
oracle in our blindness definitions. However, blindness against multiple protocol
runs directly follows from a simple hybrid argument.

Definition 12 (CA Blindness). A CA-assisted signature scheme CASIG is CA
blind, if for any ppt adversary A there exists a negligible function ν such that∣∣∣Pr[CA− BlindnessCASIG

A (1λ) = 1]− 1
2

∣∣∣ ≤ ν(λ). The corresponding experiment is
depicted in Fig. 7.

Definition 13 (CAWeak-Blindness). A CA-assisted signature scheme CASIG
is weakly CA-blind, if for any ppt adversary A there exists a negligible function
ν such that

∣∣∣Pr[CA−WBlindnessCASIG
A (1λ) = 1]− 1

2

∣∣∣ ≤ ν(λ). The corresponding
experiment is depicted in Fig. 8.

We call a CA-assisted signature scheme CASIG secure and (weakly) blind, if
it is correct, signer unforgeable, CA unforgeable, and CA (weakly) blind.

Experiment CA−WBlindnessCASIG
A (λ)

(sku, pku)← KGenu(1λ)
(pk∗, {m0,m1}, time, state)← A(pku)
b← {0, 1}
a← A〈·,U(sku,pk∗,mb,time)〉1,Revoke(·)(state)
return 1, if a = b
return 0

Fig. 8. Weak CA Blindness

4 Constructions

We now show how to come up with constructions achieving what we want. First,
we present a generic construction, which, depending on the used building blocks,
achieves weaker, or stronger resp., privacy notions. We stress that our reductions
are tight, i.e., we have no reduction losses, and thus omit a probability analysis
in the proofs.

Generic Construction Idea. Let us introduce the generic idea of our con-
struction first. We then give two different derivations of the generic construc-
tions, but instantiated with different building blocks. Both constructions offer
the same unforgeability guarantees, but offer a different level of privacy.

In a nutshell, we let a CA contribute to signature generation, but only if
the public key of the requester is not revoked at the time time of the signature
request. The CA can then also add some additional information to the final
signature such as certificates, and the like. However, from a privacy point of
view, it is also required that the CA does not learn which messages are signed,
which reflects blindness.

On the one hand, we let the signer commit to a message, and the let the
CA sign this commitment, and the signer’s public key, if, and only if, the given
public key is not revoked. The user, on the other hand, creates an additional
signature around the received signature from the CA to protect against bogus
CAs. Clearly, there is no joint setup, and thus key generation can be done offline,
which is not possible in current schemes. We stress that revoking a public key is
simply sending the CA a message “My pk has been revoked”, possibly containing
a proof of knowledge, which is not necessarly zero-knowledge.

Note, the parties do not need to communicate using a secure channel.

Construction 1 (Weakly-Blind Construction) Let CASIG := (KGenu,KGenc,
〈CA,U〉,Revoke,Verify) such that:

KGenu. Generate a key-pair of a standard digital signature scheme, i.e., return
(pku, sku)← DSIG.KGen(1λ).

User CA
sku, pkc,m, time skc, time

(C,O)← COM.Commit(pp,m)
σu ← DSIG.Sign(sku, (C, pku, pkc, time))

C, σu, pku−−−−−−−−−−−−−→
If pku is revoked, ignore.

If DSIG.Verify(pku, (C, pku, pkc, time), σu) 6= true, ignore.
σc ← DSIG.Sign(skc, (C, time, pku))

σc←−−−−−−−−−−−−−−−−
If DSIG.Verify(pkc, (C, time, pku), σc) 6= true, abort.
σ′ ← DSIG.Sign(sku, (σc, time,m,C,O, pkc, pku))
Output σ = (σ′, σc, C,O, time)

Fig. 9. CA-Assisted Signing With Weak Blindness

KGenc. Generate a key-pair of a standard digital signature scheme (pkc, skc)←
DSIG.KGen(1λ), and the public parameters pp← COM.ParGen(1λ) of a com-
mitment scheme. Return ((pkc, pp), skc).

〈CA,U〉. See Fig. 9.
Verf. To verify a signature σ = (σ′, σc, C,O, time) w.r.t. m, pkc, and pku, check

that m = COM.Open(pp, C,O), and DSIG.Verify(pkc, (C, time, pku), σc) =
true, DSIG.Verify(pku, (σc, time,m,C,O, pkc, pku), σ′) = true. If all checks
pass, output true, and false otherwise.

Theorem 1. If DSIG and COM are secure, then our construction is secure and
weakly blind.

Proof. Correctness follows from inspection. Thus, we only consider signer un-
forgeability, CA unforgeability, weak blindness. We prove each property on its
own.

Signer Unforgeability. Let A be an adversary which can break the signer un-
forgeability of our construction. We can then construct an adversary B which
either breaks the binding property of COM, or the unforgeability of the sig-
nature scheme DSIG used by the CA. Assume that there is a signature σ on
the message (σc, time,m,C,O, pkc, pk∗), where σc is a signature on the mes-
sage (C, time), but also a signature σ′ for (σc, time′,m′, C,O, pkc, pk′∗), where
(m, time, pk∗) 6= (m′, time′, pk′∗). Hence, we have two different messages which
“are in” the same commitment. Clearly, this breaks the binding property of the
commitment scheme used. In the second case, i.e., there is a new commitment
C ′ for (m, time) 6= (m′, time′) never signed by the CA, the adversary must have
been able to forge a signature σ′c. This also accounts for a revoked public key. In
both cases a reduction for B is trivial, and therefore omitted.

User CA
sku, pkc,m, time skc, time

σu ← DSIG.Sign(sku, (pku, pkc, time))
σu, pku−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If pku is revoked, ignore.
If DSIG.Verify(pku, (pku, pkc, time), σu) 6= true, ignore.

Set info← (pku, time)
proceed

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(⊥, σc)← 〈CA(skc, info),U(pkc,m, info)〉
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If BSIG.Verify(pkc,m, info, σc) 6= true, abort.
σ′ ← DSIG.Sign(sku, (σc, time,m, pkc, pku))
Output σ = (σ′, σc, time)

Fig. 10. CA-Assisted Signing with Blindness

CA Unforgeability. This case is trivial as well. If the adversary A can come up
with a signature on a message (σc, time,m,C,O, pk∗, pku), where (m, time, pk∗)
was never signed, then it can break the unforgeability of the used signature
scheme. Again, a reduction is straightforward.

CA Weak-Blindness. Trivial, as COM is perfectly hiding, and therefore σu is
independent of m, which is the only information sent to the CA, i.e., A. ut

Construction 2 (Blind Construction) Let CASIG′ := (KGenu,KGenc, 〈CA,U〉,
Revoke,Verify) such that:

KGenu. Generate a key-pair of a standard digital signature scheme, i.e., return
(pku, sku)← DSIG.KGen(1λ).

KGenc. Generate a key-pair of a partially blind signature scheme, i.e., return
(pkc, skc)← BSIG.KGen(1λ).

〈CA,U〉. See Fig. 10.
Verf. To verify a signature σ = (σ′, σc, time) w.r.t. m, pkc, and pku, check that

DSIG.Verify(pkc, (σc, time,m, pkc, pku), σ′) = true, and BSIG.Verify(pkc,m,
(pku, time), σc) = true. If all checks pass, output true, and false otherwise.

Theorem 2. If DSIG and BSIG are secure, then our construction is secure and
blind.

Proof. Again, correctness follows by inspection. It remains to prove CA unforge-
ability, signer unforgeability, and blindness.

Signer Unforgeability. Let A be an adversary which can break the signer un-
forgeability of our construction. We can then construct an adversary B which
breaks the unforgeability of the partially blind signature scheme. B receives pk
from the BSIG to forge, and embeds the received pk into the public key pkc. It
simply follows the protocol, and uses its own oracle to get signatures. If a given
pki is revoked, B no longer accepts new signing sessions. Eventually, A outputs

((m1, σ1, info1, pk1), . . . , (m`, σ`, time`, pk`)). Clearly, if pk1 was revoked, B never
asked its own oracle to generate a signature for (m1, (pk1, time1)), and can thus
return all successful runs, and (m1, σ1, time1, pk1), as for (m1, time1) is fresh by
assumption, as B never queries its own oracle any longer for fresher time.

CA Unforgeability. Essentially the same reduction as for the weakly blind
scheme.

CA Blindness. Let A be an adversary which breaks the CA blindness of our
scheme. We can then construct an adversary which breaks the blindness of the
used BSIG. B proceeds as follows. It generates pku honestly, which it also gives to
A, receiving (pk∗, {m0,m1}, time, state1). It then gives state1 to A, and interacts
with its own oracles like A does with his using m0 and m1, but uses (pku, time)
as info. If A is finished it returns state2, and B subsequently receives (σ1, σ2)
from its own challenger. Then, B gives A state2, and (σ1, σ2) to A. Whatever A
then outputs, is also output by B. ut

Efficiency. We want to stress that in the first protocol message the user essen-
tially proves knowledge of the secret key. If the signature on time is not valid,
the protocol can directly be aborted. This prohibits that outsiders use the CA to
check whether a given certificate is revoked. If this is not wanted for performance
reasons, leaving this step out is also possible.

Clearly, both constructions require that a verifier needs to verify two signa-
tures, while the CA has to generate a signature. However, considering that the
CA has to vouch that a given certificate was not revoked, it has to generate a
signature anyway, if the revocation information needs to be up-to-date, which
clearly needs to be verified as well. In other words, our construction is already
more efficient after the first signature verification. Moreover, compared to the
approach by Boneh et al. [9], an outsider can trivially derive whether our pro-
tocol was used to generate the signature, which in turn increases trust in the
signature itself, as the verifier can also decide whether it accepts a given pkc as
trustworthy.

4.1 Extensions

We now discuss informally how our basic constructions can be extended to ac-
count for additional use-cases. We omit full details and proofs due to space
limitations, however the intuition should still become clear.

Signer-Anonymity. While both our constructions give message-privacy guaran-
tees to the user, they reveal the identity of the signing party to the CA. If this
poses a potential privacy problem, it can be mitigated as follows, for instance
for the weakly-blind construction, cf. Fig. 9. The commitment is extended to
also commit to pku. Then, instead of signing the tuple in Fig. 9 in the first step,
one computes a signature proof of knowledge proving in zero-knowledge that

one knows the secret key corresponding to the public key in the commitment,
and that this public key is not on the blacklist. This can be done using similar
techniques as Idemix [16].

Revocation into the Past. Our constructions are well-suited for situations where
signing keys should simply be deactivated, e.g., when an employee leaves a com-
pany. However, in certain situations, it is also necessary to revoke “into the past”
in order to also invalidate signatures issued between key leakage and revocation,
cf. Fig. 1. In this case, the CA has to publish a list of revoked keys together
with time-stamps of their revocation moment; upon verification, only signatures
issued before this point in time would be accepted. From a complexity point
of view this solution is similar to the combination of black-list based PKIs and
time-stamping authorities, i.e., interaction is needed upon signing and verifica-
tion.

Message Policies. One could also require that the signer proves (in zero-
knowledge) that the message to be signed follows certain restrictions, e.g., that
a company policy is followed. Only if the proof is valid, and the public key is not
revoked, the server contributes to signature-generation. For example, a policy
may be that a normal employee can only sign contracts below $1,000. This can
even be done on a per-public-key basis. The size of signatures does not grow by
this extension, and also the verification costs do not increase. Furthermore, the
policy trivially remains hidden from the verifier.

Further extending the scheme efficiently such that also the CA does not learn
any information about the policy remains a challenging open problem.

Robustness. Even though our security model is fixed for one signer and one CA,
one can of course switch to a different CA on-the-fly. This protects against offline
CAs, as one can simply use another one. In particular, a user can use a single
signing key with different CAs, who act as revocation authorities for different
domains (e.g., across different companies). Revocation by one CA does not affect
other CAs. Security follows by a simple hybrid-argument.

Threshold Scheme. Related to the prior idea is an extension to threshold-
cryptography. Namely, one could require that at least n-out-of-m servers need
to participate in order to achieve robustness against offline servers.

5 Conclusion and Future Work

We have introduced the notion of CA-Assisted Signatures. These signatures
enable the revocation of signing-rights if a secret is corrupted. This is achieved
by letting a CA contribute to signature generation, vouching that the used public
key was not revoked. Thus, signatures remain valid even after revocation of the
certificate. Moreover, the CA can add timestamps, while neither the verifier
nor the CA need to be online for verification. This has the additional benefit

that verification requires less effort to check the validity of the signature. We
furthermore propose various extensions increasing the privacy guarantees of our
basic constructions.

Our construction does not pose any non-standard requirements to the sig-
nature scheme used by the user. In particular, existing signing infrastructures
could thus easily be adapted to our design without the users having to change
their key material.

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: CRYPTO.
pp. 271–286 (2000)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: ASI-
ACRYPT. pp. 452–473 (2003)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
ESORICS. pp. 159–177 (2005)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-
inversion problems and the security of chaum’s blind signature scheme. J. Cryp-
tology 16(3), 185–215 (2003)

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS. pp. 390–399 (2006)

6. Benaloh, J., Mare, M.D.: One-way accumulators: A decentralized alternative to
digital signatures. In: Eurocrypt. pp. 274–285 (1993)

7. Bicakci, K., Baykal, N.: Server assisted signatures revisited. In: CT-RSA. pp. 143–
156 (2004)

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: PKC. pp. 31–46 (2003)

9. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public
key certificates and security capabilities. In: USENIX (2001)

10. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: EUROCRYPT. pp. 416–432 (2003)

11. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: PKC. pp.
317–336 (2009)

12. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Lehmann, A., Neven, G.,
Paquin, C., Preiss, F.: Concepts and languages for privacy-preserving attribute-
based authentication. J. Inf. Sec. Appl. 19(1), 25–44 (2014)

13. Camenisch, J., van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: CCS. pp. 21–30 (2002)

14. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: SCN. pp. 134–148 (2004)

15. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How to
sign with a password and a server. ePrint 2015, 1101 (2015)

16. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO. pp. 61–76 (2002)

17. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO. pp. 199–203
(1982)

18. Chow, S.S.M., Hui, L.C.K., Yiu, S., Chow, K.P.: Two improved partially blind
signature schemes from bilinear pairings. In: ACISP. pp. 316–328 (2005)

19. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (2008)

20. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, ad-
ditional properties and relations to other primitives. In: CT-RSA. pp. 127–144
(2015)

21. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: CRYPTO. pp. 307–315
(1989)

22. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: PKC. pp.
297–316 (2009)

23. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: EUROCRYPT. pp. 197–215 (2010)

24. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Comp. 17, 281–308 (1988)

25. Gutmann, P.: PKI: it’s not dead, just resting. IEEE Computer 35(8), 41–49 (2002)
26. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless signa-

ture schemes from asiacrypt 2003. In: CANS. pp. 13–25 (2005)
27. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended

abstract). In: CRYPTO. pp. 150–164 (1997)
28. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures.

In: DPM. pp. 100–117 (2015)
29. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing op-

eration. In: CCS ’96. pp. 48–57 (1996)
30. Milles, D.L.: Time synchronization in DCNET hosts. Tech. rep., COMSAT Labo-

ratories (1981)
31. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.

In: TCC. pp. 80–99 (2006)
32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO. pp. 129–140 (1991)
33. Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: ACNS. LNCS,

vol. 8479, pp. 457–475. Springer (2014)
34. Rivest, R.L.: Can we eliminate certificate revocations lists? In: FC. pp. 178–183

(1998)

