
Project number: 653454 Project start: October 1, 2015
H2020-DS-2014-1 Project duration: 3 years

Secure Cloud Identity Wallet
D4.1

Assessment report on cryptographic
technologies, protocols and mechanisms

Document Identification
Due date March 31, 2017
Submission date March 31, 2017
Revision 1.0

Related WP WP4 Dissemination
Level

PU

Lead
Participant

TUG Lead Author Felix Hörandner (TUG)

Contributing
Beneficiaries

AIT, FOKUS, GUF,
TUG, KGH, LISPA, SIC

Related Deliv-
erables

D2.2, D2.3, D3.3, D4.2,
D4.3, D4.4, D5.1

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Abstract: This report contains a detailed assessment and analysis of eligible basic crypto-
graphic technologies, security protocols, and authentication mechanisms with respect to CRE-
DENTIAL requirements. It gives an overview of the start of the art in the different areas,
evaluates the existing schemes regarding efficiency, security, privacy, usability, etc., and makes
concrete suggestions on which technologies to use in the project.

This document is issued within the CREDENTIAL project. This project has received funding from the
European Union’s Horizon 2020 Programme under grant agreement no. 653454.
This document and its content are the property of the CREDENTIAL Consortium. All rights relevant
to this document are determined by the applicable laws. Access to this document does not grant any
right or license on the document or its contents. This document or its contents are not to be used or
treated in any manner inconsistent with the rights or interests of the CREDENTIAL Consortium and
are not to be disclosed externally without prior written consent from the CREDENTIAL Partners.
Each CREDENTIAL Partner may use this document in conformity with the CREDENTIAL Consortium
Grant Agreement provisions.
The information in this document is provided as is, and no warranty is given or implied that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Executive Summary

On a high level, the central goal of the CREDENTIAL project is to develop a privacy-preserving
data sharing platform (wallet) with integrated identity provider (IdP), which can be used to
share authenticated data without the wallet learning any of the user’s personal information.
The functionality and added value of these services will be showcased by concrete pilots from
the domains of eGovernment, eHealth, and eBusiness. A central task that has to be performed
in order to develop such a data sharing platform is the identification and evaluation of relevant
base technologies, which is provided by this deliverable.

First, we concisely introduce relevant technologies, covering different aspects of the generic data
sharing system. These aspects include cryptographic technologies, authentication mechanisms,
as well as identity and access management protocols and technologies.

We perform assessments based on high-level criteria with a focus on security, privacy, usability
and integration effort. These high-level criteria are then mapped to criteria specific to the
technologies under evaluation. The criteria are motivated by CREDENTIAL’s use cases and
requirements.

As a result of the assessment, this deliverable makes concrete recommendations for technologies
that should be considered in the design and implementation of the generic data sharing plat-
form as technological basis. Also, this deliverable presents technologies, which could provide
additional benefits to CREDENTIAL’s envisioned goal and might therefore be of interest for
further research in order to apply them.

Besides the generic technologies, we also present an overview of technologies relevant to the pilot
use cases in order to facilitate a common understanding of the involved technological ecosystem.

Finally, this deliverable provides detailed descriptions of relevant technologies in the appendix
for the curious reader. This appendix also serves as a knowledge base for project participants
to acquire information on technologies that are not in their core expertise.

ii

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Document information

Editors

Name E-mail Organisation
Bernd Zwattendorfer bernd.zwattendorfer@iaik.tugraz.at SIC
Felix Hörandner felix.hoerandner@iaik.tugraz.at TUG

Contributors

Name E-mail Organisation
Stephan Krenn stephan.krenn@ait.ac.at AIT
Christoph Striecks christoph.striecks@ait.ac.at AIT
Thomas Lorünser thomas.loruenser@ait.ac.at AIT
Nicolas Notario McDonnell nicolas.notario@atos.net ATOS
Florian Thiemer florian.thiemer@fokus.fraunhofer.de FOKUS
Jörg Caumanns joerg.caumanns@fokus.fraunhofer.de FOKUS
Jetzabel Serna jetzabel.serna@m-chair.de GUF
Andreas Abraham andreas.abraham@iaik.tugraz.at TUG
Christof Rabensteiner christof.rabensteiner@iaik.tugraz.at TUG
Elias Klughammer elias@klughammer.com KGH
Andrea Migliavacca andrea.migliavacca@cnt.lispa.it LISPA
Alberto Zanini alberto.zanini@lispa.it LISPA
Silvana Mura silvana.mura@cnt.lispa.it LISPA
Franco Nieddu franco.nieddu@iaik.tugraz.at SIC
Simon Roth simon.roth@iaik.tugraz.at SIC
Enrico Francescato enrico.francescato@infocert.it ICERT

Reviewers

Name E-mail Organisation
Stephan Krenn stephan.krenn@ait.ac.at AIT
Florian Thiemer florian.thiemer@fokus.fraunhofer.de FOKUS
Elias Klughammer elias@klughammer.com KGH

History

Version Date Reason/Change Editor
0.1 14.01.2016 Document creation Bernd Zwattendorfer
0.2 16.02.2016 Added General Factsheets Felix Hörandner
0.3 10.03.2016 Added eHealth Factsheets Florian Thiemer

iii

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

0.4 18.03.2016 Added eGovernment Factsheets Andrea Migliavacca
0.5 02.05.2016 Added Technology Details: OpenID Co-

nenct
Felix Hörandner

0.6 02.05.2016 Added Technology Details: FIDO, SAML Andreas Abraham
0.7 25.05.2016 Added eBusiness Factsheets Enrico Francescato
0.8 27.05.2016 Added Technology Details: Proxy Re-

Encryption
Felix Hörandner

0.9 27.05.2016 Added Technology Details: SQRL Nicolas Notario
0.10 28.06.2016 Added Technology Details: Malleable Sig-

natures
Andreas Abraham

0.11 28.06.2016 Added Technology Details: OAuth Felix Hörandner
0.12 01.07.2016 Added Technology Details: UMA, XACML Andreas Abraham
0.13 01.07.2016 Added Technology Details: PDPs and

PORs
Christoph Striecks

0.14 15.07.2016 Added Technology Details: KMIP Andreas Abraham
0.15 27.07.2016 Added Technology Details: FHE and SE Christoph Striecks
0.16 27.07.2016 Added Technology Details: secret sharing,

pseudonyms, TPASS
Stephan Krenn

0.17 29.07.2016 Added Technology Details: Anonymous
credentials

Jetzabel Serna

0.18 29.07.2016 Added details for WS-* description Florian Thiemer
0.19 01.08.2016 Added e-Health Technology Details Jörg Caumanns
0.20 01.08.2016 Added Technology Details: SCIM Andreas Abraham
0.21 16.08.2016 Added eGovernment Technology Details Andrea Migliavacca

Alberto Zanini
0.22 16.08.2016 Evaluated Identity Protocols Felix Hörandner
0.23 21.09.2016 Added Details for ABCs and PIR Jetzabel Serna
0.24 03.10.2016 Added Details for PKCS11 Andrea Migliavacca
0.25 13.10.2016 Evaluated Malleable Signatures Christoph Striecks
0.26 14.10.2016 Evaluated Secret Sharing Stephan Krenn
0.27 17.10.2016 Restructured Document Felix Hörandner
0.28 18.10.2016 Evaluated SCIM Andreas Abraham
0.29 25.10.2016 Evaluated PRE Types Felix Hörandner
0.30 03.11.2016 Evaluated Authorization Protocols Andreas Abraham
0.31 08.11.2016 Updated Introduction and Methodology Felix Hörandner
0.32 29.11.2016 Evaluated PDP, POR, PIR, ORAM, and

FHE
Stephan Krenn
Thomas Lorünser

0.33 01.12.2016 Evaluated PRE vs ABE and redactable sig-
natures vs anonymous credentials

Christoph Striecks
Stephan Krenn

0.34 20.12.2016 Evaluated searchable encryption and added
details for remote attestation

Christoph Striecks
Stephan Krenn

0.35 20.12.2016 Evaluated KMIP and WebCrypto API Christof Rabensteiner
0.36 28.12.2016 Added Technology Details: TPM and TEE Franco Nieddu

iv

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

0.37 13.01.2017 Evaluated TPM and TEE Franco Nieddu
0.38 13.01.2017 Improved structure of document Felix Hörandner
0.39 16.01.2017 Evaluated Authentication Technologies Jetzabel Serna
0.40 16.01.2017 Evaluated Verifiable Computing Felix Hörandner
0.41 16.01.2017 Evaluated Policy Languages Florian Thiemer
0.42 16.01.2017 Added abstract and acronyms Stephan Krenn
0.43 23.01.2017 Added introductions and floating text to

core crypto technologies
Stephan Krenn

0.44 24.01.2017 Added methodology section Stephan Krenn
0.45 24.01.2017 Added Introduction and introductions to

eGovernment and eBusiness sections
Andrea Migliavacca

0.46 26.01.2017 Finalized additional crypto section and Ap-
pendix B

Christoph Striecks

0.47 27.01.2017 Finalized protocols section Christof Rabensteiner
0.48 27.01.2017 Added Executive Summary Felix Hörandner
0.50 14.01.2017 Reviewing and fixing Felix Hörandner

Stephan Krenn
0.51 14.02.2017 Added Conclusion Elias Klughammer
0.52 24.02.2017 Polished eGovernment and eBusiness sec-

tions
Silvana Mura

0.53 03.03.2017 Reviewed Document Florian Thiemer
0.54 07.03.2017 Addressed Review Comments Felix Hörandner

Stephan Krenn
0.56 08.03.2017 Re-Wrote Conclusion Felix Hörandner
0.57 27.03.2017 Polishing Felix Hörandner
1.0 31.03.2017 Final copy-editing Stephan Krenn

v

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Table of Contents

1 Introduction 1

1.1 The CREDENTIAL Project . 1

1.2 Scope of this Deliverable . 3

1.3 Relation to Other Deliverables . 4

1.4 Overview of Assessment Results . 4

1.5 Outline . 6

2 Assessment Methodology 7

2.1 Fact Sheet Description . 8

2.2 High-Level Criteria . 9

3 Core Cryptographic Technologies 11

3.1 Secure Data Sharing . 11

3.2 Authentic Data Disclosure . 22

3.3 Section Conclusion . 29

4 Additional Cryptographic Technologies 30

4.1 Authentication . 30

4.2 Access to Encrypted Data . 32

4.3 Other Technologies . 39

4.4 Section Conclusion . 45

5 Authentication to the Cloud 46

5.1 Authentication Factors . 46

5.2 Authentication Technologies . 47

5.3 Underlying Technologies for Authentication . 56

5.4 Section Conclusion . 58

6 Identity and Access Management Protocols 59

6.1 Identity Protocols . 59

vi

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

6.2 Authorization Protocols . 72

6.3 Policies . 78

6.4 Cryptographic Protocols and APIs . 82

6.5 Other Technologies . 87

6.6 Section Conclusion . 88

7 Pilot-Specific Technologies 90

7.1 Overview of eGovernment Technologies . 90

7.2 Overview of eHealth Technologies . 93

7.3 Overview of eBusiness Technologies . 100

8 Conclusion 102

A Details for Core Cryptographic Technologies 120

A.1 Proxy Re-Encryption . 120

A.2 Fully Homomorphic Encryption . 128

A.3 Malleable Signatures . 129

A.4 Anonymous Credentials . 133

B Details for Additional Cryptographic Technologies 139

B.1 Authentication . 139

B.2 Access to Encrypted Data . 140

B.3 Other Technologies . 147

C Details for Authentication to the Cloud 154

C.1 Authentication Technologies . 154

C.2 Underlying Technologies for Authentication . 168

D Details for Identity and Access Management Protocols 172

D.1 Identity Protocols . 172

D.2 Authorization Protocols . 182

D.3 Policies . 190

vii

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

D.4 Cryptographic Protocols and APIs . 199

D.5 Other Technologies . 204

E Details for eGovernment Technologies 208

E.1 CNS (Carta Nazionale dei Servizi) . 208

E.2 CSP (Cryptographic Service Provider) . 210

E.3 PKCS #11 . 211

E.4 ISO 7816 . 213

E.5 STORK/STORK 2.0 Framework . 215

E.6 eIDAS Interoperability Framework . 216

F Details for eHealth Technologies 218

F.1 Health Information Exchange . 219

F.2 Clinical Content Representation . 234

F.3 Outline . 236

G Details for eBusiness Technologies 237

G.1 PEC (Posta Elettronica Certificata) . 237

G.2 S/MIME . 241

G.3 SPID . 242

viii

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

List of Figures

1 CREDENTIAL’s Basic Architecture . 2

2 Selection Methodology . 7

3 Most Prominent eHealth Standardization Bodies 94

4 Proxy Re-Encryption . 121

5 Redactable Signature Concept . 131

6 Blank Digital Signature Concept [81] . 132

7 ABC System: Entities and Interactions [150] . 134

8 ABC System: Basic Operations [150] . 135

9 Idemix . 137

10 FIDO Basic Concept . 155

11 FIDO Registration [57] . 156

12 FIDO Login [57] . 157

13 FIDO UAF High-Level Architecture View [56] . 157

14 OATH high level architecture [97] . 159

15 API Exchange Flow . 161

16 Use of Mobile Connect by the User . 163

17 Mobile Connect Login . 163

18 SQRL Working Principle . 164

19 SQRL Registration and Authentication . 165

20 SQRL Client-Side Key Management [68] . 166

21 Components of the TPM 1.2 [78] . 168

22 Architecture of the TEE [146] . 170

23 Authentication with OpenID Connect . 173

24 Discovery of Identity Providers with OpenID Connect 175

25 Registration of Service Providers with OpenID Connect 176

26 SAML Basic Concept . 178

27 SAML’s Main Components [133] . 179

28 Identity Provider Initiated Login . 181

ix

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

29 OAuth Process Flow . 183

30 UMA’s Three Different Phases [112] . 185

31 UMA’s High Level Flow [59, 113] . 187

32 Venn-Diagram of the UMA Protocol Standard 187

33 WS-Trust Model . 189

34 Negotiation Process in WS-Trust . 190

35 WS-Policy Model . 191

36 XACML High Level Architecture [134] . 195

37 XACML Engine Process Flow [134] . 196

38 XACML Policy Elements [174] . 198

39 IT-Infrastructure in an Enterprise not using KMIP 201

40 IT-Infrastructure in an Enterprise Utilizing KMIP 202

41 SCIM Actors [98] . 205

42 SCIM Object Model [99] . 206

43 CNS . 209

44 CNS Card . 210

45 PKCS #11 . 212

46 STORK Process . 216

47 eIDAS . 217

48 Prominent Standardization Bodies . 218

49 IHE XDS Actors and Transactions (from IHE ITI TF-1) 220

50 IHE XDS Registry Objects [IHE ITI TF-3] . 221

51 IHE Actors and Transactions . 225

52 IHE Audit Trail and Node Authentication (ATNA) 228

53 Five Major Building Blocks of the Message . 228

54 Flow of Control . 230

55 DSG Actor Model . 233

56 FHIR Primitive Types [from FHIR homepage] . 236

57 Correct Transportation Envelope with Successful Delivery 240

x

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

58 S/MIME Signatures . 241

59 S/MIME Encryption . 242

60 SSO SP-Initiated Redirect/POST binding . 244

List of Tables

1 Summary of Technology Assessment . 5

2 Comparison of Proxy Re-Encryption Types . 20

3 Evaluation of Anonymous Credentials vs Malleable Signatures 25

4 Comparison of Searchable Encryption Schemes 33

5 Evaluation of PIR Schemes . 35

6 Evaluation details for POR and PDP schemes. 38

7 Comparison of Identity Protocols . 71

8 Authorization Protocols Comparison . 77

9 Policy Standard Comparison . 82

10 Evaluation Results of KMIP and WebCrypto . 87

List of Acronyms

ABC Attribute Based Credential
ABE Attribute Based Encryption
AgID Agenzia per l’Italia Digitale
API Application Programming Interface
ASN Abstract Syntex Notation
CAS Central Authentication Service
CBE Certificate-based Encryption
CLS Certificate-less Encryption
CNS Carta Nazionale dei Servizi
CRL Certificate Revocation List
CRUD Create, Read, Update, Delete
CSP Cryptographic Service Provider
DLL Dynamic Link Library
DPR Decreto del Presidente della Repubblica
FHE Fully Homomorphic Encryption
HPC Healthcare Professional Card
HSM Hardware Secure Module

xi

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

HTTP Hypertext Transfer Protocol
IBE Identity-Based Encryption
IAM Identity and Access Management
IdP Identity Provider
ISO International Organization for Standardization
JSON JavaScript Object Notation
JWT JSON Web Token
KGC Key Generation Center
KMIP Key Management Interoperability Protocol
OCSP Online certificate status Protocol
ORAM Oblivious RAM
OTP One-Time Password
PDP Proof of Data Possession
PEC Posta Elettronica Certificata
PEKS Public-key Encryption with Keyword Search
PIN Personal Identification Number
PIR Private Information Retrieval
PKCS Public Key Cryptography Standard
PKG Private Key Generator
PKI Public Key Infrastructure
POR Proof of Retrievability
PRE Proxy Re-Encryption
RAM Random Access Memory
REST Representational State Transfer
RS Redactable Signature
SDK Software Development Kit
SE Secure Element; Searchable Encryption
S/MIME Secure/Multipurpose Internet Mail Extension
SAML Security Assertion Markup Language
SCIM System for Cross-domain Identity Management
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SP Service Provider
SPID Sistema Pubblico Identita Digitale
SLO Single Log Out
SOAP Simple Object Access Protocol
SSO Single Sign-On
TEE Trusted Execution Environment
TLS Transport Layer Security
TPASS Threshold Password-Authenticated Secret Sharing
TPM Trusted Platform Module
TRL Technology Readiness Level
UMA User-Managed Access
UNI Ente Nazionale Italiano di Unificazione
URL Uniform Resource Locator

xii

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

W3C World Wide Web Consortium
WS-* Web Service
WSDL Web Services Description Language
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

xiii

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

1 Introduction

A core activity within CREDENTIAL is the identification and evaluation of relevant base tech-
nologies especially in the fields of cryptography, identity and access management as well as
authentication mechanisms, to develop a cloud-based data sharing platform. In the assessment,
whose results are gathered in this report, we evaluate the relevant technologies based on their
relevance for the CREDENTIAL project’s vision according to a set of high-level criteria. Also,
this report provides an overview of technologies relevant to three pilots in the domains of eGov-
ernment, eHealth, and eBusiness but does not further evaluate them. In-depth descriptions
of relevant technologies are provided to allow for further analysis or application. This assess-
ment represents an input for the design and implementation of the CREDENTIAL components
and raises directions for further research to enhance technologies or make them suitable for
CREDENTIAL.

1.1 The CREDENTIAL Project

The goal of CREDENTIAL is to develop, test and showcase innovative cloud-based services
for storing, managing, and sharing digital identity information and other critical personal data.
This approach keeps the user in control while enjoying the benefits of a cloud solution. The
use of sophisticated cryptographic mechanisms, such as proxy re-encryption [25] and redactable
signatures [103], will enable a secure and privacy preserving information sharing network for
cloud-based identity information in which even the identity provider cannot access the data
in plain-text and hence protect access to identity data. The project goal is to extend the
application of the CREDENTIAL approach to a comprehensive cloud system and to existing
solutions by using and exploiting recognized standards and protocols.

CREDENTIAL’s basic architecture is based on the integration of cryptographic mechanisms
involving three key components, namely a user, the CREDENTIAL wallet, and a data receiver,
as shown in Figure 1. The user owns data that might be securely stored or shared with
other members of the CREDENTIAL wallet. A client application in the user’s domain handles
cryptographic operations involving the user’s private key, such as signing or generating a re-
encryption key. The CREDENTIAL wallet is a cloud-based data storage and sharing service
offering benefits such as constant availability on the Internet, scalability, and cost effectiveness.
The Identity and Access Management system implements a multi-factor authentication and
authorizes access to the stored data. This leads to two main advantages: A proxy re-encryption
system does not expose plain text data, therefore confidentiality of data shared and stored by
CREDENTIAL wallet in the cloud is ensured; Once a re-encryption key is available for some
specific set of data as defined by the user, these data can be shared with specified receivers
even when the user or her client application are not available. The data receiver can be
either another CREDENTIAL user or a service provider. This receiver decrypts and verifies
the shared data in order to reach authorization decisions and further process the data.

The data sharing process involves the actors of CREDENTIAL’s basic architecture in the
following steps:

1

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 1: CREDENTIAL’s Basic Architecture

1. The user authenticates at the wallet to get read and write permission to her wallet account,
which are used to upload signed and encrypted data.

2. To later share this data, the user generates a re-encryption key towards a selected data
receiver in her trusted domain. Along with this key, the user defines a policy defining
which data may be disclosed to which entity and installs it at the wallet.

3. When an authorized receiver tries to access the user’s data, not required parts are redacted
and the remaining parts are transformed into ciphertext for the data receiver by using the
re-encryption key.

4. Finally, the data receiver is able to decrypt the data and verify the signature on the
disclosed parts.

To showcase the functionality of the CREDENTIAL wallet and to demonstrate how a higher
security and privacy can be achieved by the means of the CREDENTIAL wallet, three dif-
ferent pilots in the domains eGovernment, eHealth and eBusiness are developed within the
project. A more detailed description of the scenarios can be found in Hörandner et al. [90].

• eGovernment: The pilot focuses on identity management to authenticate citizens and
assess their eligibility for a service, based on sensitive identity attributes. Standardized
identity protocols such as SAML or OpenID Connect are used in CREDENTIAL’s identity
management data sharing process. Within these protocols, the service provider (i.e., the
data receiver) triggers the process by requesting authentication and identity attributes
from the identity provider (i.e., the CREDENTIAL wallet). The pilot will not only enable
authentication via national eID solutions but also cross-border authentication according
to the eIDAS regulation [54]. The wallet requests a consent to the user and generates a
re-encryption key, whilst the service provider receives re-encrypted attributes disclosed in
a selective way.

• eHealth: The pilot focuses on secure data sharing between patients, doctors, and further
parties, in the field of type 2 diabetes. In particular, the process applies to patients, which
use mobile devices to record their health data. The data is collected by a CREDENTIAL

2

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

eHealth mobile app which remotely stores them in the CREDENTIAL wallet. The user
can decide who is allowed to access medical data and which specific parts are exposed,
thus allowing authorized people to prepare and send medical advices back to the user.
This data sharing approach offers several advantages to the patient, such as enhanced
privacy by minimizing disclosed data, having a continuous control of health data, as well
as saving time and money for personal visits.

• eBusiness: The pilot focuses on the integration of modular libraries implementing CRE-
DENTIAL’s technologies into existing solutions to provide additional value. In particular,
it tackles the issue of forwarding encrypted mails, which are nowadays increasingly used
by companies to protect data and products, when employees are not at work. In fact,
according to the current legislation, an employee has to provide her private keys to access
the company e-mail system to give the possibility to other colleagues to still read and
eventually take over incoming mail. Through proxy re-encryption, an employee can gen-
erate a re-encryption key towards an authorized colleague and hand this key to the mail
server before leaving. The mail server is then able to re-encrypt incoming mail during the
worker’s absence and forward it to the authorized colleague.

1.2 Scope of this Deliverable

The objective of this document is to thoroughly investigate eligible technologies with the aim
to select the most suitable technologies for CREDENTIAL. In this document, the technologies
are described briefly, their relevance to CREDENTIAL is stated concisely, and they are evalu-
ated according to high-level criteria, resulting in technology recommendations. In detail, this
deliverable evaluates the following:

• Core Cryptographic Schemes, with a focus on technologies to securely share data,
such as proxy re-encryption, and mechanisms to selectively disclose authentic subsets of
shared data, in particular redactable signatures, are of crucial importance to reach our
vision for CREDENTIAL.

• Additional Cryptographic Schemes might offer further security, usability or privacy
benefits to the CREDENTIAL system. This includes for example secret sharing mecha-
nisms (also applied to authentication processes) or privacy-enhancing technologies.

• Authentication Technologies represent another technological aspect for the cloud-
based CREDENTIAL system. This deliverable not only evaluates state-of-the-art (cloud)
authentication mechanisms, but also investigates technologies to bind (cryptographic) op-
erations to the executing hardware, such as Trusted Platform Modules (TPM) or Trusted
Execution Environments (TEE).

• Identity and Access Management Technologies are mostly based on standardized
protocols and specifications (for example OpenID Connect, OAuth, XACML) in modern
IAM systems. As such an IAM system also has to be designed as an integral part of
CREDENTIAL, we assess state of the art technologies according to CREDENTIAL’s
requirements and extensions possibilities with selected cryptographic tools.

3

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Furthermore, this deliverable gives an overview of pilot-specific technologies required in different
domains but does not make an evaluation of them.

1.3 Relation to Other Deliverables

The following list briefly describes other related deliverables and their connection to this deliv-
erable:

D2.2 System security requirements, risk and threat analysis (1st iteration): D2.2 col-
lects security requirements relevant for CREDENTIAL. These requirements serve as input
for the technology assessment in D4.1.

D2.3 Cloud identity wallet requirements: D2.3 focuses on functional, technical, organi-
zational and legal requirements related to CREDENTIAL-related. In combination with
D2.2’s security requirements, these requirements are used to support the assessment of
technologies.

D3.3 Recommendations on privacy-enhancing mechanisms: D3.3 analyzes threats to
the user’s privacy within the CREDENTIAL system and evaluates mitigation strategies.
While D4.1 assesses and recommends the technological state of the art to be considered in
the design of CREDENTIAL, D3.3 performs it’s analysis influenced by the privacy issues
and enhancements of these technologies.

D4.2 Security enhancements for basic cryptographic technologies: D4.2 will perform
further research on core and additional cryptographic mechanisms suggested by this de-
liverable with the goal to improve or combine those technologies.

D4.3 Recommendations for improving identity protocols: D4.3 will investigate how the
suggested and selected identity protocols can be enhanced to support our recommended
cryptographic technologies.

D4.4 Guidelines for secure authentication to the cloud: D4.4 will investigate how the
suggested technologies can be used to implement strong user authentication. If weaknesses
are identified within the authentication technologies, D4.4 will furthermore try to enhance
them.

D5.1 Functional Design: D5.1 will especially consider the technologies suggested by this
deliverable in the design of the generic CREDENTIAL system.

1.4 Overview of Assessment Results

In Table 1, we present a concise summary of our assessment results. This table should introduce
the reader to the technology clusters, the evaluated technologies and our findings. Further
information on the evaluations is presented in Sections 3 to 6, while details on the technologies
are given in Appendices A to G.

4

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Fully Suitable Limited Suitability Currently Not of Interest
Recommended Requires Further Research Not Recommended

Core Cryptographic Technologies
Secure Data Sharing

Classical Proxy Re-Encryption
Conditional Proxy Re-Encryption

Proxy Re-Encryption
with Keyword Search
Certificate-Based PRE
Certificate-Less PRE

Attribute-Based Encryption
Identity-Based PRE
Attribute-Based PRE

Fully Homomorphic Encryption
Authentic Data Disclosure

For data sharing:
Redactable Signatures

For identity data:
Anonymous Credentials

Additional Cryptographic Technologies
Authentication

TPASS
Distributed Password Verification
Password-based Cryptography
Access to Encrypted Data

Searchable Encryption
Proofs of Retrievability
Provable Data Possession

Private Information Retrieval
Oblivious RAM

Other Technologies
Unlinkable Pseudonyms

Secret Sharing
Verifiable Computing

Authentication to the Cloud
Authentication Technologies

FIDO UAF
FIDO U2F
OATH

SQRL Mobile Connect

Underlying Technologies
TPM TEE

Identity and Access Management
Identity Protocols

OpenID Connect
SAML

OpenID
OAuth

WS-Federation
CAS

Mozilla Persona
WebID

Authorization Protocols
OAuth
UMA

WS-Trust
Kerberos

Policies
XACML WS-Policy

Cryptographic Protocols and APIs
W3C WebCrypto API

KMIP
Other Technologies

SCIM
Table 1: Summary of Technology Assessment

5

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

1.5 Outline

The remaining sections are organized as follows: Section 2 gives a detailed description of the
applied assessment methodology and the high-level evaluation criteria. The next four sections
assess different technological aspects by introducing and evaluating relevant technologies. Sec-
tion 3 focuses on core cryptographic technologies to securely share data and disclose authentic
subsets. Section 4 provides an overview and evaluation of further cryptographic technologies
that are not at the center of CREDENTIAL but which might provide further benefits. In
Section 5, different authentication technologies are presented. Section 6 assesses protocols and
technologies with a focus on identity and access management. Additionally, Section 7 provides
an overview of technologies specific to the three pilot domains, namely eGovernment, eHealth
and eBusiness. Section 8 summarizes the results of our assessment and provides concrete rec-
ommendations. In the appendices, we provide further details on relevant technologies, for core
cryptographic technologies (Appendix A), additional cryptographic technologies (Appendix B),
authentication technologies (Appendix C), and identity and access management protocols (Ap-
pendix D). Further appendices give details on pilot-specific technologies, namely eGovernment
(Appendix E), eHealth (Appendix F), and eBusiness (Appendix G).

6

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

2 Assessment Methodology

In the following, we explain the methodology used in this document for evaluating the different
technologies. Basically, we follow the following steps:

Figure 2: Selection Methodology

Clustering: In a first step, we define clusters of potentially relevant technologies, e.g., for
selective disclosure of authentic data to other parties, or for authenticating users towards
a cloud service. For each of those clusters, we collect promising instantiations from the
literature. Furthermore, we collect all technologies that are pre-defined by the chosen
pilot scenarios.

Fact sheets: Next, we fill in fact sheets for all potential technologies. The goal of those fact
sheets is to get a concise overview of the offered features, maturity levels, or IPR issues.
The structure and content of those fact sheets is described in more details in Section 2.1.

Pre-sorting: Based on the findings of the fact sheets, a first pre-sorting is performed to fil-
ter out technologies that—e.g., because of efficiency drawbacks or because clearly more
suitable solutions exist—will not be further used within CREDENTIAL.

Assessment process: The remaining technologies are then evaluated in detail to obtain clear
recommendations. We therefore define high-level evaluation criteria (cf. Section 2.2 for
details). Those criteria cover both generic and technology specific aspects.

7

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

We then evaluate each technology (cluster) for those criteria, having in mind the different
requirements for the CREDENTIAL wallet (e.g., as defined in D2.2 and D2.3). In the
evaluation we are not following a consistent ordering of the evaluation criteria, but rather
try to streamline the process. That is, we first concentrate on the most important criteria
for each technology to be able to sort out unsuitable technologies as early as possible to
avoid unnecessary effort.
An overview of this selection process is depicted in Figure 2.

Detailed descriptions: As a final step, certain technologies are specified in full details and
can be found in the appendix. Besides the recommended technologies we also describe
technologies that could be interesting for potential successors of the CREDENTIAL wallet
if certain limitations (e.g., efficiency or usability wise) can be overcome; those technologies
are typically also recommended for future research in the evaluation conclusions.

2.1 Fact Sheet Description

As mentioned earlier, we use fact sheets for briefly introducing all analyzed technologies. The
purpose of those fact sheets is to give a compact overview not only about the potential and
relevance of the different technologies, but also specify relevant further issues like the technology
readiness level (TRL) and the technology status or known intellectual property aspects—all
aspects that can potentially influence the decision whether or not to use a specific technology.

When specifying the TRL, we follow the European Commission’s recommendation [53], i.e., we
define the technology readiness levels as follows:

TRL 1: basic principles observed

TRL 2: technology concept formulated

TRL 3: experimental proof of concept

TRL 4: technology validated in lab

TRL 5: technology validated in relevant environment (industrially relevant environment in the
case of key enabling technologies)

TRL 6: technology demonstrated in relevant environment (industrially relevant environment
in the case of key enabling technologies)

TRL 7: system prototype demonstration in operational environment

TRL 8: system complete and qualified

TRL 9: actual system proven in operational environment (competitive manufacturing in the
case of key enabling technologies; or in space)

In the following we now present a template of our fact sheets and explain in detail the possible
semantics of each of the fields.

8

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Name of Technology [Literature Reference]
Type of Technology Specifies the type of technology; for instance signature schemes,

proxy re-encryption, or anonymous credential systems
Status Gives information on the status of the technology. The following

different status types are distinguished:

• Concept paper

• Technology report

• Specification

• Standard

• Framework

• Prototype

• Project

Additional information on the status such as current version of
the technology and its publication year are provided.

TRL To facilitate the assignment and reading, we cluster TRLs as fol-
lows:

• Low (L): ideas and concepts, corresponding to TRL 1 or 2.

• Medium (M): prototypes and demonstrators, corresponding
to TRLs 3 to 7.

• High (H): complete products or solutions, corresponding to
TRLs 8 or 9.

Implementation If available, a reference to an open source implementation is given
here.

IPR (License Model) Provides information on the intellectual property rights (IPR) of
this technology, e.g., the licensing model

Brief Description: Briefly describes the technology
Relevance to CREDENTIAL: Provides quantitative as well as – if important – qualitative
information how relevant this technology is for CREDENTIAL.

We may omit fields in our fact sheets if no information on, e.g., licensing models, were available.

2.2 High-Level Criteria

In the following, we provide more details on, and the rationale underlying, our high-level criteria
for evaluating technologies, cf. also Figure 2. The main goal is to recommend technologies that
are provably secure and privacy-preserving, offer high convenience to the users of the CREDEN-
TIAL wallet, and are compatible with existing parts on the pilot partners’ side. Specifically, we
distinguish the following generic clusters of evaluation criteria:

9

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Security: Security is one of the main categories for most technologies evaluated in this re-
port, in particular including all cryptographic schemes and authentication and identity
protocols. For instance, this category subsumes aspects such as:

• confidentiality of (identity) data;
• authenticity of the information received by a service provider;
• required level of trust into the wallet provider; or
• means for revoking expired or compromised identity information.

In particular for cryptographic schemes, security also covers whether a scheme is provably
secure, and which computational hardness assumptions have to be made.

Privacy: While in the literature privacy is sometimes considered as one aspect of security, we
consider it as a separate evaluation criterion because of the privacy-by-design and privacy-
by-default aspects of CREDENTIAL. This category in particular evaluates whether:

• different actions by the same user can or cannot be linked by third parties;
• it can be checked that a specific action has been performed by a user; or whether
• a user can determine on a fine-granular level which information he wants to reveal
to another party.

Similarly to security, also required complexity assumptions will be considered if appropri-
ate.

Usability: Usability is of key importance when developing a system that shall be adopted by
a broad range of users. Therefore, this cluster poses another important criterion when
evaluating existing technologies. For instance, usability considers:

• the efficiency and performance including scalability aspects;
• convenience aspects for the user such as the support for Single Sign-On or Sign-Off;
or
• whether and how much secret data a user needs to memorize or store locally on his
device.

Integration Effort: While the rationale of the previous criteria were mainly user-centric, the
integration effort cluster of evaluation criteria is about the suitability of a technology for
the CREDENTIAL system. The goal is to recommend technologies that can practically
be integrated into our solution. For instance, it considers aspects like:

• whether or not a technology is standardized;
• whether the technology is compatible with other (pilot-specific and thus pre-defined)
technologies; or
• whether open-source implementations under appropriate licences exist to avoid re-
implementations.

10

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

3 Core Cryptographic Technologies

In this section, we introduce and evaluate the cryptographic technologies which are at the
very core of the CREDENTIAL tool chain. That is, we focus on cryptographic technologies
that allow one to share data across different stakeholders—e.g., users, service providers—in an
authentic yet privacy-preserving manner. Consequently, we focus on two main technology areas:
techniques for efficient and secure sharing of data without requiring an unrealistic level of trust
in the cloud storage provider, and techniques that allow one to blank out parts of authentic
documents to give the data owner full control over which information he or she wants to share
with a data receiver.

In Section 3.1 we compare different solutions for secure data sharing, in particular attribute-
based encryption (ABE) and proxy re-encryption (PRE), and argue why the latter primitive is
better suited for the CREDENTIAL wallet. Furthermore, we explain why fully homomorphic
encryption (FHE) is currently not a viable alternative either.

Similarly, in Section 3.2 we introduce provably secure constructions for authentic data sharing
with the option for only partial disclosure of information. In particular, we introduce the
concepts of redactable signatures (RS) and their generalization, attribute-based credentials
(ABC). We justify our choice for the former.

Now and for the rest of this document, we will first present fact sheets for all technologies to
be evaluated. As already explained earlier, those fact sheets will contain a short description of
the technology as well as its maturity level. This summary will then be followed by a detailed
evaluation, focusing on the evaluation criteria introduced in Section 2.2. Detailed descriptions
of the different technologies can be found in Appendix A.

3.1 Secure Data Sharing

In this section, we first justify a fundamental design decision of CREDENTIAL. Namely, we ex-
plain why we give proxy re-encryption priority over the almost equivalent alternative attribute-
based encryption, cf. Section 3.1.1. Then, in Section 3.1.2 we do an in-detail analysis of the
many different flavors of proxy re-encryption and chose those most suitable for usage within
CREDENTIAL. Finally, in Section 3.1.3, we briefly discuss fully homomorphic encryption as a
theoretically interesting though practically not yet usable alternative.

3.1.1 Attribute-Based Encryption vs. Proxy Re-Encryption

There are two practically efficient and probably secure cryptographic primitives that could
be used to pursue the goals of CREDENTIAL, attribute-based encryption (ABE) and proxy
re-encryption (PRE).

The former allows for creating fine-grained attribute-specific ciphertexts such that any user can
decrypt the ciphertext if and only if the user has the corresponding attribute-specific secret key.
For example, a ciphertext could address doctors with an attribute doctor. Now, any user with

11

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

a doctor-specific secret key is capable to decrypt that ciphertext but nobody else is able to do
so (e.g., no user with attribute patient). To delegate decryption rights, a delegator can use his
secret-key material to derive attribute-specific secret keys and may send those keys (on a secure
channel) to a delegatee. It follows that any delegatee is able to decrypt the ABE-ciphertexts of
the delegator if and only if the delegatee is in possession of the proper attribute-specific secret
key(s).

Alternatively, in PRE, each participant in the system has its own public and secret key pair.
If, for instance, a patient wants to share data with a doctor, she encrypts her data under her
own public key, and stores it in the cloud. Furthermore, the patient uses her own secret key
and the public key of the doctor to compute a so-called re-encryption key. When the doctor
now wants to access the data, the cloud would re-encrypt the encrypted data, such that it can
now be de-ciphered using the doctor’s secret key. As long as the cloud provider and the data
receiver do not collude, the patient’s data is secure and hidden from the cloud provider.

We next compare some important features of those two primitives.

Evaluation Criteria

We use the following two security and usability criteria to compare PRE and ABEs:

Access-Rights Adaptability (Usability): This criterion specifies whether a delegatee’s ac-
cess rights can adaptively be set by the delegator (i.e., access granted or revoked).

Trusted Proxy (Security): A proxy can be trusted, semi-trusted, or untrusted. For a trusted
proxy, one must assume that the proxy does not perform any malicious actions and cannot
be compromised, while an untrusted proxy could behave arbitrarily malicious at any
point in time. A semi-trusted proxy is assumed to behave partially honest, i.e., it may
for instance be allowed to leak arbitrary ciphertexts or use bias random coins, but still
follows the protocol specification when talking to the user. The precise assumptions for
semi-trusted proxies need to be clearly stated for each specific scenario.

Evaluation

Inherently, ciphertexts in ABE systems are more fine-grained (i.e., they are decryptable under
many secret keys) in comparison to PRE where ciphertext are all-or-nothing (i.e., they are
decryptable exactly under one specific secret key). That means that if a delegator wants to
revoke access rights of a delegatee in an ABE system, the delegator has to trigger the proxy
not to give any future ciphertext (that are associated with the delegatee’s attributes) to the
delegatee. In a PRE system on the other hand, the delegator has to trigger the proxy to delete
the re-encryption key (associated to that delegatee) properly. Hence, in an ABE system, the
proxy needs some kind of access control while in the PRE system, the proxy only needs to
delete the appropriate re-encryption keys securely. (One can think of a hard disk that only
contains ciphertexts. A dispose of that hard disk in the ABE case can be difficult while in the
PRE case one is safe to dispose the disk when the re-encryption keys are stored in a different

12

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

place.) Furthermore, to give more access rights to a delegatee, a delegator has to issue new
attribute-specific secret-key material to the delegatee in an ABE system each time while in a
PRE system, the delegator has to do nothing.

Further, both systems have to trust the proxy on a semi-level. That is that one needs access
control which is done at the proxy’s end in the ABE case while in the PRE case, one has to be
sure that the proxy deletes the re-encryption keys securely.

Evaluation Conclusion

Although both techniques are almost equal on the evaluation level, we strive for PRE. That is,
if one is going to use a constrained and not-fixed device (e.g., a mobile phone as planned in
CREDENTIAL) and wants to give access to specific delegatees, one does not need the secret-
key material each time when using PRE; which, however, is different to using ABE where one
needs the delegator’s secret-key material and (potentially heavy) secret-key computation on
used device. Further, disposing ciphertexts (e.g., on a hard disk) is a problem in ABE systems
since their ciphertext structure is more fine-grained in comparison to PRE. (Of course, one has
to make sure that the re-encryption keys are not stored on the same hard disk in the PRE case.)

3.1.2 Proxy Re-Encryption

There are multiple different types of Proxy Re-Encryption that are implemented by multiple
constructions exhibiting different properties.

Classical Proxy Re-Encryption [25]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (1998)
TRL M - Multiple schemes were implemented and their performance

was compared, for example in [129].
Implementation https://www.nics.uma.es/dnunez/nics-crypto (LGPL li-

cense)
Brief Description: Proxy re-encryption is a public key encryption paradigm where a semi-
trusted proxy, given a transformation key, can transform a message encrypted under the key
of party A into another ciphertext to the same message such that another party B can decrypt
it with its private key. Although the proxy can perform this re-encryption operation, it does
not learn anything about the encrypted message.
Relevance to CREDENTIAL: This algorithm could be used to provide proxy re-
encryption operations.

Identity-Based Proxy Re-Encryption [75]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (2007)
TRL M - A proof of concept implementation is available.

13

https://www.nics.uma.es/dnunez/nics-crypto

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Implementation https://github.com/nikosft/IB-PRE
Brief Description: Identity-based encryption (IBE), introduced by Shamir [160], is a sub-
category of public-key encryption in which the public key of an entity can be derived from
identity information about that entity, such as an email address. An identity-based system
usually relies on a trusted third party, the private key generator (PKG), which issues private
keys to authorized entities. These private keys are derived from a master key and the verified
identity information.
The main advantage of IBE over PKE is that PKI is not required. In IBE, publicly known
identity information, instead of public keys, is used for encryption. Therefore, there is no
need to distribute public keys or to ensure their authenticity with certificates. Hence, PKI
issuing these certificates is not required.
However, IBE requires significant trust assumptions, which prevent wide-spread usage. IBE
faces the key escrow problem, since all private keys are issued by the PKG. This PKG,
therefore, has the ability to decrypt any ciphertext of its users. This problem is the motivation
for certificate-less and certificate-based encryption.
Relevance to CREDENTIAL: This algorithm could be used to provide proxy re-
encryption operations.

Certificateless Proxy Re-Encryption [166]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (2010)
TRL L - The technology concept was formulated and applications were

defined, but there is no claim of an implementation.
Brief Description: Certificate-less encryption (CLE), proposed by Al-Riyami and Pater-
son [10], neither uses certificates with all the associated public key infrastructure nor suffers
from the key escrow problem. CLE is based on IBE, however, the third party does not gen-
erate the user’s secret key on its own. Instead, this third party, now called key generation
center (KGC), issues a partial private key (PPK) from its master key for the user’s identity.
This PPK and a secret value (SV) chosen by the user represent the actual decryption key.
For encryption, the sender requires the publicly known identity string as well as key material
derived from the user’s SV.
Certificate-less proxy re-encryption (CL-PRE), introduced by Sur et al. [166], applies this
concept of CLE to PRE. The benefits of using CLE are that PKI is not required, while
it does not suffer the key escrow problem. Since CLE is based on IBE, it enjoys the same
advantage of not needing certificates to ensure the authenticity of encryption key material, as
the recipient is determined through her identity information. Therefore, without certificates,
PKI is superfluous. In addition, the distributed generation of the decryption key material
solves the key escrow problem. As both, the KGC as well as the user, contribute input for
the actual decryption key material, the KGC does not have enough information to decrypt
on its own.
Relevance to CREDENTIAL: This algorithm could be used to provide proxy re-
encryption operations.

14

https://github.com/nikosft/IB-PRE

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Certificate-Based Proxy Re-Encryption [167]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (2013)
TRL L - The technology concept was formulated and applications were

defined, but there is no claim of an implementation.
Brief Description: Certificate-based encryption (CBE), introduced by Gentry [66], is sim-
ilar to CLE, as it combines classical and identity-based encryption, while preserving their
attractive features. In contrast to CLE, CBE uses certificates with a simplified PKI, which
does not require the inconvenient checks for revocation status. A certification authority (CA)
issues these certificates for the public key of a user-generated key pair, thereby binding the
user’s identity to the key material. Data is encrypted with the public key for the recipient’s
identity and the current time period. Decryption requires not only the private key but also
a valid certificate the time period.
Certificate-based proxy re-encryption (CB-PRE), proposed by Sur et al. [167], applies the
concept of CBE to PRE. By introducing identity-based concepts, CBE enables implicit certi-
fication, which requires a recipient to be certified in order to decrypt. During encryption, the
sender specifies the identity of the receiver and uses the presumably associated public key.
In order to decrypt such a ciphertext, the receiver not only requires her private key but also
a valid certificate linking the used identity to the used public key. Consequently, the sender
does not have to check the authenticity of the used public key, as the receiver is implicitly
required to be in possession of an appropriate certificate.
For revocation, CBE only requires a simplified PKI without queries to a third party for
the revocation status. Implicit certification requires recipients to possess currently valid
certificates. As these certificates expire after a short time, the CA frequently has to re-certify
the association between the user’s identity and key material. To revoke this association, the
CA is instructed to stop re-certifying the user’s key material. However, a previously issued
certificate stays valid for the remainder of its short lifespan.
Relevance to CREDENTIAL: This algorithm could be used to provide proxy re-
encryption operations.

Conditional Proxy Re-Encryption [172]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (2009)
TRL L - The technology concept was formulated and applications were

defined, but there is no claim of an implementation.

15

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: Conditional proxy re-encryption [172] (C-PRE) and type-based proxy
re-encryption [168] (TB-PRE) were independently introduced with the same motivation: to
provide users with fine-grained control over the delegation of decryption rights. The previ-
ously discussed variants of proxy re-encryption enable the proxy to transform all of party
A’s ciphertexts once she provides a re-encryption key. In contrast, C-PRE (as we will also
call TB-PRE) allows the user to specify which of her ciphertexts can be transformed by a
re-encryption key. This is realized by tagging a ciphertext with a condition during encryp-
tion and only allowing to translate this ciphertext with a re-encryption key that satisfies the
condition.
For example, selective re-encryption of urgent mail highlights new possible applications of
C-PRE. For the duration of her vacation, party A wants party B to be able to read and
answer only her urgent mails. With C-PRE, a sender encrypts the mails for party A and
tags them with additional information, for example urgent. Before leaving, party A generates
a re-encryption key to party B for the condition urgent. Given this key, the mail gateway
is only able to re-encrypt those mails tagged as urgent for party B. Party A’s other mails
remain confidential.
Relevance to CREDENTIAL: This algorithm could be used to provide proxy re-
encryption operations.

Attribute Based Re-Encryption [118]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (2013)
TRL L - The technology concept was formulated and applications were

defined, but there is no claim of an implementation.
Brief Description: With Attribute Based Encryption (ABE) data is encrypted with regards
to some attributes, which define an access policy. If a recipient wants to decrypt such a
ciphertext, her private key has to reflect the required attributes, thereby fulfilling the access
policy. Attribute Based Re-Encryption allows to re-encrypt ciphertexts that were encrypted
for one policy to ciphertexts for another policy. The ABE concept relies on a trusted third
party, which issues private keys after having checked the entity’s attributes.
Relevance to CREDENTIAL: ABE could be used to limit the re-encryption power of the
proxy.

Proxy Re-Encryption with Keyword Search [161]
Type of Technology Proxy Re-Encryption Type
Status Concept paper (2010)
TRL L - The technology concept was formulated and applications were

defined, but there is no claim of an implementation.

16

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: Public-key encryption with keyword search (PEKS), introduced by
Boneh et al. [27], enables users to search for a keyword in encrypted data stored by another
party. To realize this, the sender tags data with a keyword during encryption, before handing
the ciphertext to the recipient’s storage provider. In order to search, the recipient generates
a trapdoor for a keyword, hands this trapdoor to her storage provider, which then tests for
matching ciphertexts.
Proxy re-encryption with keyword search (PRES), presented by Shao et al. [161], allows to
delegate both decryption and search rights to another party. As in PEKS, data is encrypted
for a recipient, and tagged with a keyword. In addition, a proxy can re-encrypt the recipients’s
ciphertext for another user. Then, this user is able to generate trapdoors that can be used
to search on the re-encrypted data as well as to decrypt these ciphertexts.
Relevance to CREDENTIAL: ABE could be used to limit the re-encryption power of the
proxy.

Proxy re-encryption plays an integral role in the design of CREDENTIAL as it not only pro-
vides confidentiality for the user’s sensitive data, but also enables secure end-to-end data shar-
ing. However, there are multiple different types of proxy re-encryption, which provide further
functionality or improvements.

In the following, we will first describe evaluation criteria and explain their motivation. Then,
we use these criteria to evaluate the individual types of proxy re-encryption. Finally, we discuss
our results and draw a conclusion.

Evaluation Criteria

This section lists different evaluation criteria and describes their impact.

Trust Requirements (Security) (Usability): Widely different trust assumptions are re-
quired depending on the used type of proxy re-encryption. Some types introduce a third
party, which is involved in the generation of the participant’s key material. If such a
party inherently has full knowledge of the user’s decryption key, which is also known as
the key escrow problem, the user has to completely trust this third party (see Hoyle and
Mitchell [92] for an in-depth discussion of the problem). Such a high trust requirement is
hard to fulfill, especially in a system where a huge number of diverse users are present.

Revocation (Security): This criterion describes when revocation information is propagated
to participants who want to use the revoked key material. Revocation might happen
almost immediately, or periodic after a defined short timespan.

Scalability (Usability): When dealing with a huge number of users, for example in a cloud-
based solution, the scalability of the chosen approach is important. Especially, supporting
revocation turns out to cause scalability issues. That is, participants have to check the
status of other participants’ key material, in order to ensure the keys are still valid to use
in an encryption process. For example, this status information can be provided through

17

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

certificate revocation lists (CRLs) or the online certificate status protocol (OCSP), which
cause substantial load for the public key infrastructure (PKI).

No Key Distribution Problem (Security) (Usability): The key distribution problem oc-
curs when key material has to be handed to an entity, as this entity has to be sure of
the keys’ authenticity and integrity. In this criterion, we do not consider the distribution
of key material from the key’s owner to a participant who wants to use it, as this is a
fundamental challenge which is solved in all types of proxy re-encryption. Instead, this
criterion focuses on the generation of key material. If a third party is involved in the key
generation, the resulting keys have to be sent to the actual owners. This transmission has
to be sent over a secure channel or secured via additional means. Therefore, this might
be hard to achieve, which is at least inconvenient for the involved participants.

Support for Policies (Security): This criterion examines the possibility to limit the power
of misbehaving proxies and ciphertext receivers. By applying a policy, only certain ci-
phertexts might be re-encrypted or decrypted. Consequently, this limits which ciphertext
can be decrypted.

Support for Search (Usability): This criterion evaluates if the proxy re-encryption type
supports search on the encrypted data and if the search rights can also be delegated
through the re-encryption operation.

Transformation (Usability): This criterion examines the different kinds of transformations,
which are performed by the re-encryption operation of the individual proxy re-encryption
types. Typically, ciphertext encrypted for one entity is transformed to ciphertext en-
crypted for another entity. However, other types of proxy re-encryption do not encrypt
for entities but rather for identities referring to entities, or attribute sets which might
be fulfilled by a number of entities. Therefore, the transformations are also from and to
identities or attribute sets.

Evaluation

In this section, we evaluate the individual types of proxy re-encryption based on the previously
identified criteria.

Trust Requirements: In classical, cerificate-based, and conditional proxy re-encryption as
well as proxy re-encryption with keyword search, the key material is generated locally by
the participant. Therefore, no trust in an external party is required.
With certificate-less proxy re-encryption, the keys are partially generated locally but also
partly by a third party. Consequently, some limited trust has to be placed in this third
party.
High trust into a third party is required when using identity-based or attribute-based proxy
re-encryption. In those cryptographic mechanisms, the keys for an identity or the keys
representing attributes are generated by a third party, which therefore also commands full
decryption power.

18

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Revocation: In certificate-less and certificate-based proxy re-encryption, the key material is
only valid for a short period of time. Here, revocation is considered not renewing the key
material or certification.
Similarly, in identity-based and attribute-based proxy re-encryption, we can add a validity
period to an identity or as an attribute. Thereby, we achieve revocation based on a limited
lifetime.
For revocation, classical and conditional proxy re-encryption, as well as, proxy re-encryption
with keyword search build on public key infrastructure, which can be implemented in two
flavors. Firstly, by using long-lived certificates, a sender can query the PKI through OCSP
to check the status of the public key before using it, which allows to immediately propa-
gate revocation information. Secondly, short-lived certificates are only valid for a limited
timespan and revocation is achieved by not re-issuing a certificate after the period.

Scalability: Types of proxy re-encryption that employ a limited lifetime of key material have
high scalability, as the associated infrastructure does not have to be queried for the cur-
rent revocation status. However, keys or certificates have to be re-issued periodically.
Nevertheless, re-issuing once per period can be significantly more efficient than checking
the revocation status for each usage of the key, which might happen many times per
time period. High scalability applies to certificate-less, certificate-based, identity-based,
and attributes-based proxy re-encryption, as well as, proxy re-encryption types using PKI
with short lived certificates, such as classical, conditional, and proxy re-encryption with
keyword search.
In contrast, scalability is an issue for types of proxy re-encryption that employ long-lived
certificates, which have to be checked for revocation before each use. This can apply to
classical and conditional proxy re-encryption, as well as, proxy re-encryption with keyword
search.

No Key Distribution Problem: In classical, cerificate-based, and conditional proxy re-en-
cryption as well as proxy re-encryption with keyword search, the key material is generated
locally by the participant. Therefore, this key material does not have to be distributed.
With certificate-less proxy re-encryption, the keys are partially generated locally but also
partly by a third party. Consequently, the remote part has to be transmitted to the
participant.
In identity-based and attribute-based proxy re-encryption, the keys for an identity or the
keys representing attributes are generated by a third party, which therefore have to be
distributed to the participants.

Support for Policies: Conditional proxy re-encryption provides support for policies. In this
type, policies or attributes are attached to re-encryption keys and ciphertexts. The re-
encryption operation is only successful if the attributes fulfill the policy. Thereby, proxies
are limited in which ciphertexts a given re-encryption key can encrypt. This limits the
potential for abuse.
Also, attribute-based proxy re-encryption can provide support for policies. This type of
proxy re-encryption requires that the attributes of a re-encryption key match the policy

19

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

attached to a ciphertext. By appending further attributes and policy conditions, the use
or abuse of the re-encryption key can be limited.
In contrast, policies are not supported by the other types of proxy re-encryption, namely
classical, identity-based, certificate-less, and cerificate-based proxy re-encryption, as well
as, proxy re-encryption with keyword search,

Support for Search: Proxy re-encryption with keyword search is the only type that enables
to search on encrypted data and makes it possible to delegate the search rights as well.

Transformation: Most types of proxy re-encryption transform ciphertext that was encrypted
for one entity into ciphertext for another entity. This applies to classical, certificate-less,
cerificate-based, and conditional proxy re-encryption, as well as, proxy re-encryption with
keyword search.
In identity-based proxy re-encryption, data is not encrypted for an entity but rather for
an identity, which refers to a currently existing or future entity. Therefore, in this type
of proxy re-encryption, data encrypted for one identity is transformed into ciphertext for
another entity.
In contrast, when using attribute-based proxy re-encryption, data is encrypted for attribute
sets which fulfill a policy. Consequently, the re-encryption operation transforms data
encrypted for an attribute set into data encrypted for another attribute set.

Evaluation Conclusion

C
la
ss
ic
al

P
R
E

‡

Id
en
ti
ty
-B
as
ed

P
R
E

C
er
ti
fic
at
e-
Le
ss

P
R
E

C
er
ti
fic
at
e-
B
as
ed

P
R
E

C
on
di
ti
on
al

P
R
E

‡

A
tt
ri
bu

te
-B
as
ed

P
R
E

P
R
E
w
it
h

K
ey
w
or
d
Se
ar
ch

‡

Trust Requirements L H M L L H L

Revocation Immediate*
/ Periodic† Periodic Periodic Periodic Immediate*

/ Periodic† Periodic Immediate*
/ Periodic†

Scalability L* / H† H H H L* / H† H L* / H†

No Key Distribution
Problem 3 7 7 3 3 7 3

Support for Policies 7 7 7 7 3 3 7

Support for Search 7 7 7 7 7 7 3

Transformation E → E Id → Id E → E E → E E → E Attr→Attr E → E

* denotes short-lived certificates; † denotes long-lived certificates; ‡ denotes the usage of PKI
Table 2: Comparison of Proxy Re-Encryption Types

20

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The results of evaluating different proxy re-encryption types are summarized in Table 2. In con-
clusion, we recommend classical proxy re-encryption and as an improvement conditional proxy
re-encryption. Further details on these proxy re-encryption types can be found in Appendix A.1.

We recommend to employ classical proxy re-encryption. In contrast to identity-based and
certificate-less proxy re-encryption, this type requires no trust into a third parts, can achieve
high scalability, and does not suffer from the key distribution problem. Certificate-based proxy
re-encryption has the same benefits. However, classical proxy re-encryption has been established
for a longer period of time and, therefore, also offers a greater variety of schemes implementing
this type.

Furthermore, as an improvement over classical proxy re-encryption, we recommend conditional
proxy re-encryption, which also provides support for policies. To limit the proxy’s power to
abuse given re-encryption key, we mainly consider conditional and attribute-based proxy re-
encryption. However, in contrast to conditional proxy re-encryption, the attribute-based coun-
terpart requires high trust assumptions and suffers from the key distribution problem. Also, in
CREDENTIAL we want to share data from entity to entity and not focus on applying globally
valid attributes to the users. Hence, conditional proxy re-encryption is more suitable.

Even though search functionality is key to provide a user-friendly experience, we do not fully
recommend proxy re-encryption with keyword search. Only this type makes it possible to
delegate search rights and, as it extends classical proxy re-encryption, it has similar properties,
such as low trust requirements, high scalability, and no key distribution problem. However,
we cannot fully recommend proxy re-encryption with keyword search. Sharing key material to
perform search on encrypted data outside the proxy re-encryption ecosystem might be a better
fit for CREDENTIAL’s use case, as this approach can be integrated into any proxy re-encryption
type and scheme we choose to implement.

3.1.3 Fully Homomorphic Encryption

Fully Homomorphic Encryption [67]
Type of Technology Fully Homomorphic Encryption
Status Concept paper (2009)
TRL M - There are multiple implementations for fully homomorphic

encryption and their performance has been compared.
Implementation https://github.com/shaih/HElib (GPL)
Brief Description: Fully Homomorphic Encryption (FHE) allows to compute arbitrary
functions on plaintexts only given the corresponding ciphertexts, without knowing any private
key material or learning the plain values. In general, a scheme is homomorphic if algebraic
operations propagate through the encryption.
Fully homomorphic encryption supports two operations, namely addition and multiplication.
With those operations it is possible to construct logic circuits and, therefore, evaluate arbi-
trary functions. However, fully homomorphic encryption schemes are not yet practical, as
they are not efficient enough for most use cases.

21

https://github.com/shaih/HElib

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: As fully homomorphic encryption schemes can evaluate
arbitrary functions on the input’s ciphertext, a multitude of usage scenarios is possible.
For example, FHE could be used to perform access control, as a function could re-encrypt
ciphertexts only if they satisfy some arbitrary policy. Furthermore, as FHE is very powerful,
it could be used to derive new attributes from existing, encrypted attributes.

Fully homomorphic encryption schemes might enable powerful extensions to the CREDENTIAL
data sharing platform, in particular when combined with proxy re-encryption schemes. For
instance, one could then decide that a receiver is not allowed to access single data sets, but only
arbitrary functions such as certain statistics over large amounts of data.

Despite its potential benefits, we omit a detailed evaluation of fully homomorphic encryption
schemes here. This is because at the time of writing, such schemes are not practically efficient.
For instance, despite recent advances (e.g., [51, 44]), the bootstrapping step (which is inherently
needed in all existing schemes to enable the fully homomorphic feature) requires key sizes
ranging between many megabytes up to gigabytes even when encrypting only single bits.

However, future advances in this area might lead to a revision of this evaluation. Furthermore,
we believe that in particular the combination with proxy re-encryption might be a valuable area
of research for privacy-preserving data sharing applications.

3.2 Authentic Data Disclosure

In traditional signature schemes, every single bit flip in the signed document will immediately
invalidate the signature. However, one goal of CREDENTIAL is to give the data owner full
control over which parts of potentially authentic (i.e., signed) data she wants to share with
other parties. For instance, consider the following scenario: a user wants to authenticate herself
to a service provider using her electronic identity card. The service provider requires a proof
that the user is at least 65 years old, e.g., for granting a price reduction. Now the user should
be able to proof that she is old enough to receive the discount, but the service provider should
not learn all the other information contained in the eID.

We therefore analyzed various technologies that allow controlled modifications of a document
after receiving a signature on it.

3.2.1 Malleable Signature Schemes

In the following, we first assess the different types of malleable signature schemes, and then
compare different instantiations of the chosen primitive, redactable signatures.

Redactable Signatures [103]
Type of Technology Digital Signature Scheme
Status Concept paper (2002)

22

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

TRL L - The technology concept was formulated and applications were
defined, but there is no claim of an implementation.

Brief Description: In documents that were signed using a redactable signature scheme,
it is possible to redact arbitrary parts, while still being able to verify the signature. This
redaction can be performed by any entity without requiring interaction with the original
signer. A redactable signature scheme has to provide a way to ensure that only semantically
sound redactions are possible.
Relevance to CREDENTIAL: Redactable Signatures could be used to only disclose a
minimized set of the user’s attributes.

Sanitizable Signatures [16]
Type of Technology Digital Signature Scheme
Status Concept paper (2005)
TRL M - The authors of this paper implemented their signature scheme

and presented a performance analysis.
Brief Description: Documents that were signed using a sanitizable signature scheme, can
be modified by an explicit redactor in a controlled and limited fashion, while still staying
valid. A redactor is usually able to modify or remove designated areas of the document.
Relevance to CREDENTIAL: Sanitizable Signatures could be used to only disclose a
minimized set of the user’s attributes by removing undesired parts. However, the ability to
modify parts of the user’s data has to be carefully investigated.

Blank Digital Signature [81]
Type of Technology Digital Signature Scheme
Status Concept paper (2013)
TRL L - The technology concept was formulated and applications were

defined, but there is no claim of an implementation.
Brief Description: In the blank digital signature scheme, the signer first defines a template,
which consists of fixed parts, as well as variable parts with a set of values. This template is
signed by the signer. A designated redactor is then able to select one of the predefined values
for each variable. The signature still holds for such an instance of the template.
Relevance to CREDENTIAL: The use of blank digital signatures could help to fulfill the
requirement to only disclose a minimal set of information about the user.

Functionality-wise, we strive for malleable signature schemes that allow for redacting signed
documents at the wallet’s end without any need of additional (secret) key material. We argue
that sanitizable and blank digital signatures (as special cases of malleable signatures) are not
suitable in the CREDENTIAL setting. That is that within the sanitizable and blank digital sig-
natures context, the sanitizer and the proxy are in need of secret-key material, respectively, and
hence it would require that the wallet must manage keys with each issuer. Redactable signature
(RS) schemes in turn allow for redaction of signed document without the need of additional key
material at the wallet. Hence, redactable signature schemes fit our needs functionality-wise.

23

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

In the following we therefore do not further evaluate sanitizable or blank signatures any further,
but solely concentrate on redactable signature schemes. Due to the large body of work in
this field and the many different flavors of redactable signature schemes, we perform an in-
depth evaluation of representative schemes in order to identify the most suitable types and
instantiations of RS for CREDENTIAL.

Evaluation Criteria

The following criteria have been chosen as a basis to evaluate different redactable signature
schemes:

Unforgeability (Security): There exist numerous notions of unforgeability for signature sche-
mes. We consider EUF-CMA (existential unforgeability under chosen message attacks,
(one of) the standard unforgeability definitions for digital signature schemes) as the min-
imum security that needs to be guaranteed.

Privacy (Privacy): For redactable signature schemes privacy means that redacted data is
hidden and cannot be reconstructed by a receiver.

Transparency (Privacy): This property guarantees that a third party cannot tell whether
or not a redaction took place.

Unlinkability (Privacy): This property guarantees that an adversary cannot tell whether
two redacted versions were generated from the same or different documents, if this cannot
be decided based on the revealed data.

Model (Security): We analyze whether a scheme is secure in the standard model or whether
it requires idealized assumptions such as the availability of random oracles.

Assumption (Security): We analze under which complexity assumptions a scheme can be
proved secure. For schemes that can generically be built from a variety of concrete in-
stantiations, this criterion cannot be evaluated but depends on the used building block.

Efficiency Criteria (Usability): We compare different aspects of efficiency, such as key or
signature sizes, or signing, redaction, or verification costs.

Evaluation

In the following Table 3, we evaluated the schemes under the mentioned criteria.

Evaluation Conclusion

It is not possible to give a concrete recommendation which scheme to use in privacy-preserving
applications or even within the CREDENTIAL project. This is because different application
scenarios require different privacy features (e.g., unlinkability is important for identity provi-
sioning but might be less important for sharing diabetes diaries). Also, the chosen schemes need

24

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brzuska et
al. [31]

Pöhls et
al. [147]

Ahn et
al.[9]

Samelin et
al. [157]

Derler et
al. [50]

Security and Privacy Criteria
EUF-CMA 3 3 3(selectively) 3 3

Privacy 3 3 3(strong) 3 3

Transparency 3 3 3 3 3

Unlinkability 7 ? 3 ? ?

Model Standard Standard Random
Oracle Standard Standard

Assumption Generic Generic CDH Generic Generic
Efficiency Criteria

Signature size O(n2) · |σ| O(n) · |σ| O(m logm) O(n) · |σ| O(m) + |σ|
Signing key size |sk| |sk| O(logm) |sk| |sk|

Verification key size |vk| |vk| O(logm) |vk| vk

Key generation costs TK TK O(logm) TK TK

Signing costs O(n) · TS O(n) · TS O(logm) O(n) · TS TS ·m
Redaction costs O(r) O(r) O(r log r) O(r) O(r)
Verification costs O(n) · TV O(n) · TV O(logm) O(n) · TV TV ·m

Table 3: Some constructions are generic in a way that they use an underlying schemes (e.g.,
signature or accumulator schemes); hence, we denote with vk, sk the verification key and the se-
cret key of the scheme; we write σ to denote the signature; TK , TS , TV denote the computational
costs of key generation, signing, and verification, respectively. Let m and r be the maximum
length of the message and the length of its redactions, respectively. Brzuska et al.’s, Pöhl et
al.’s, Derler et al.’s schemes utilize a tree-based approach with n nodes. Ahn et al. consider
quotable signature schemes.

to be compatible with all the other employed cryptographic primitives, in particular the chosen
proxy re-encryption scheme. Depending on the concrete scenario any of the evaluated schemes
could be used within our project.

3.2.2 Anonymous Credentials vs Redactable Signatures

In the following, we give a short overview of some of the most prevalent anonymous credential
systems, which in some sense can be seen as an extension of redactable signature schemes.
However, later in this section, we will not evaluate the different schemes against each other,
but rather compare anonymous credential systems against redactable signature schemes on a
primitive level.

Idemix Anonymous Credentials [34]
Type of Technology Anonymous Credentials

25

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Status Concept paper (2002)
TRL M – Idemix has been trialled in operational environments, i.e.,

with real applications and real users.
Implementation https://abc4trust.eu/idemix/ (Apache 2 license)
Brief Description: In a system using Anonymous Credential, an organisation first checks
a list of attributes regarding user, which are then issued as an anonymous credential. Those
credentials can then be used to convince a verifier, for example a wine-merchant, that the
user fulfills some requirements, such as being of age. The advantage in comparison to normal
signature schemes is, that requirements can be proven while only revealing a minimal set of
information about the user. Anonymous credentials allow to reveal single attributes, and to
perform arithmetic, comparison as well as logic operations on the attributes, without actually
revealing the data itself.
Some features include 1. Minimal information disclosure 2. Pseudonymity 3. Conditional
anonymity 4. Multi-show unlinkability
The signature scheme underlying the idemix system are CL signatures.
Relevance to CREDENTIAL: The use of anonymous credentials could help to fulfill the
requirement to only disclose a minimal set of information about the user.

U-Prove Anonymous Credentials [143]
Type of Technology Anonymous Credentials
Status Technology report (2013), Version 1.1
TRL M – U-Prove has been trialled in operational environments, i.e.,

with real applications and real users.
Open Source imple-
mentation

http://research.microsoft.com/en-us/projects/u-prove/

Brief Description: From a functionality point of view, the main difference to idemix is that
UProve only supports single-show credentials, i.e., re-using a credential more than once makes
the user’s actions linkable in contrast to idemix, where an arbitrary number of presentations
of the same credential can be kept unlinkable. The signature scheme underlying the UProve
system are Brands signatures.
Relevance to CREDENTIAL: The use of anonymous credentials could help to fulfill the
requirement to only disclose a minimal set of information about the user.

Persiano Anonymous Credentials [145]
Type of Technology Anonymous Credentials
Status Concept paper (2004)
TRL M – Proof of concept validation (lab environment) in highly dy-

namic scenarios such as vehicular networks.
Brief Description: From a functionality point of view, the Persiano system is comparable
to idemix, cf. above.
Relevance to CREDENTIAL: The use of anonymous credentials could help to fulfill the
requirement to only disclose a minimal set of information about the user.

26

https://abc4trust.eu/idemix/
http://research.microsoft.com/en-us/projects/u-prove/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Evaluation Criteria

When comparing anonymous credential systems against redactable signature schemes, we will
focus on the following criteria. Note that as we are comparing two clusters of technologies also
the criteria are rather clusters of properties rather than specific properties.

Supported functionality (Usability). This criterion analysis which functionalities going be-
yond the plain feature of selective disclosure are typically supported by anonymous cre-
dential systems and redactable signature schemes, respectively.

Properties (Privacy) (Security). We analyze here all security and privacy features of the
two primitives with regard to the use cases identified within the CREDENTIAL project.

Efficiency and Scalability (Usability). This criterion evaluates the computational costs of
both primitives, in particular when applying them to larger documents with many redact-
able blocks.

Flexibility (Integration effort). We here estimate how easy it will be to integrate the schemes
with the remaining CREDENTIAL framework, including the combination with other
primitives like proxy re-encryption. To guarantee an in-time delivery of the CREDEN-
TIAL results, this is a key criterion.

Cloudifiability (Integration effort) (Usability). As we are aiming for a maximum degree
of cloudification for our systems, we also analyze to which degree the two primitives can
be cloudified with reasonable effort within the project.

Evaluation

Supported functionality. Anonymous credential systems, which are also described in detail
in Appendix A.4, can be seen as an extension of unlinkable redactable signatures.1 That is,
they not only allow one to selectively disclose or hide specific blocks of a document towards
the intended receiver, but typically also support a large variety of additional functionality,
such as revocation, (scope-exclusive) pseudonyms, or predicates over attributes to allow
a user, e.g., to prove that she is at least 18 years old without revealing the actual birth
date. All those features are, e.g., covered by the most prominent anonymous credential
schemes, Microsoft’s UProve [143] and IBM’s identity mixer (aka idemix) [34], see [35] for
a formal treatment.
In terms of functionality, attributed-based credential systems are thus superior to redact-
able signature schemes.

Properties. In contrast to redactable signature schemes, existing anonymous credential sys-
tems typically do not support transparency, as they usually assume a known structure of
a document (e.g., an electronic identity card) and thus it is always known whether or not

1Actually, it is possibly to build unlinkable redactable signatures from anonymous credential systems and
vice versa, using additional cryptographic primitives such as commitments and generic zero-knowledge proofs of
knowledge.

27

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

data fields have been removed. However, in the context of data sharing, this feature may
be required depending on the concrete scenario and type of shared data. For instance,
the number of redacted entries in a treatment history report might by itself already be
privacy-sensitive information.
On the other hand, multi-show credentials (see above) canonically support unlinkability
as an inherent feature of such schemes. Yet, the evaluation of redactable signatures in
Section 3.2.1 shows that this feature can also be achieved by specific redactable signature
schemes.

Efficiency and Scalability. Credential systems are usually optimized for relatively small num-
bers of attributes, but can be extended to an arbitary number of blocks, which however
often causes high computational costs and larger keys; for instance, in the case of [34],
each redactable message block causes one exponentiation in a group of large order.
On the other hand, there exist redactable signature schemes where each additional message
block only requires one additional evaluation of a cryptographic hash, which is computa-
tionally less expensive than in the anonymous credential case.

Flexibility. Because of the larger variety of redactable signature schemes, as well as their
lower algebraic and algorithmic complexity, we expect that an integration of redactable
signatures with proxy re-encryption is easier than in the anonymous credential case. Also,
as their structure is closer to standard signatures, we expect that they are easier to
integrate with other used technologies like authentication protocols.

Cloudifiability. The high-level setup of anonymous credential systems does not involve a cen-
tral cloud platform which computes presentation tokens to authenticate a user towards a
service provider. Rather, this computation is assumed to be executed locally on the user
side. However, this is not a suitable setting in the case of data sharing, where the data
owner might not be online when the data is accessed by the receiver. Also, in the case of
shared devices, having the credential locally on the device might not be desirable from a
privacy and security point of view.
Because of the lower required research efforts for combining redactable signatures with
proxy re-encryption schemes, we thus believe that also the privacy-preserving cloudifica-
tion of redactable signatures will be easier to achieve in the required timeframe than for
anonymous credential schemes.

Evaluation Conclusion

At this point, we opt for redactable signature schemes for being used in CREDENTIAL. This
is due to the fact that transparency might be important feature in the data sharing scenarios,
the higher efficiency of redactable signatures, and that the combination of redactable signatures
with other required technologies seems more feasible than for full-fledged anonymous credential
systems.

However, we recommend that to keep in mind the extended functionalities and features offered
by anonymous credential systems, and integrate them whenever possible.

28

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

3.3 Section Conclusion

We assessed and evaluated the main cryptographic primitives which seemed to be of potential
relevance for CREDENTIAL. We argued why we recommend proxy re-encryption over attribute-
based encryption and redactable signatures over attribute-based credentials, even though also
their counterparts would be viable alternatives with their own specific advantages. Within the
concrete recommended technologies, we provided an overview of the available variants and gave
concrete recommendations for usage within CREDENTIAL.

Full details on the discussed technologies can either be found in the original literature or in
Appendix A.

29

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

4 Additional Cryptographic Technologies

In this section, we describe and evaluate additional cryptographic technologies which are rele-
vant for CREDENTIAL in the context of authentication, access to encrypted data, and related
technologies. Concretely, in Section 4.1, we list password-based authentication technologies in
fact sheets. Password-based systems are for example relevant to store cryptographic key ma-
terial. In Section 4.2, access-to-encrypted-data technologies are described and evaluated. That
is since we inherently deal with encrypted data in the CREDENTIAL-wallet, cryptographic
ways to access, search, audit, and retrieve encrypted data must be considered. Further related
technologies are given and evaluated in Section 4.3; in particular, secret sharing (share a sensi-
tive message securely among many servers), unlinkable pseudonyms, and verifiable computing
(convince a client of a correct server computation) are considered.

4.1 Authentication

In this subsection, we cluster the password-based cryptographic technologies TPASS, Dis-
tributed Password Verification, and Asymmetric Password-based Cryptography in form of fact
sheets. In Appendix B, we provide more details on TPASS.

TPASS (Threshold Password-Authenticated Secret Sharing) [33, 37]
Type of Technology Password Management and Secret Sharing
Status Concept Paper (2015)
TRL L - The construction has been presented in the paper, but there

is no implementation.
Brief Description: In a TPASS system, the user’s data, which includes her password,
is distributed across multiple servers. Those servers engage in a protocol to authenticate
the user and to reconstruct a strong secret, which can be used for further cryptographic
operations. Even if a number of servers below the threshold are compromised, an attacker is
not able to determine the user’s data in a brute-force attack.
The second paper describes an improved TPASS protocol that is more secure and provides
better usability, than the one discussed above (Camenisch et al.). Firstly, the user only has
to know her password to authenticate and to re-construct her secret key. No data from a
prior setup has to be remembered by the user, which improves the mobility of this solution.
Secondly, unlike in the previous approach, even if the user performs the protocol exclusively
with malicious servers, they are not able to learn the user’s password. Therefore, the described
solution is also more secure.
Relevance to CREDENTIAL: Such a TPASS system could be used to implement pass-
word based authentication, and furthermore, provide the user with means to store and access
key material.

Distributed Password Verification [38]
Type of Technology Password Management
Status Concept Paper (2015)

30

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

TRL M - An implementation and performance measurements were pre-
sented in the paper.

Brief Description: This paper describes an approach to distribute password verification
across multiple servers. An adversary can only perform an offline brute-force attack on stored
user data, if all servers are compromised. In contrast to other concepts, such as the above
mentioned TPASS, recovery from corruptions is computationally inexpensive.
Relevance to CREDENTIAL: This concept could be used to implement a password
authentication mechanism, that is hard to attack offline, and which has an efficient process
in place to recover compromised servers.

Asymmetric Password-based Cryptography [20]
Type of Technology Password Management and Secret Sharing
Status Concept Paper (2013)
TRL L - The construction has been presented in the paper, but there

is no implementation.
Brief Description: In the usual (symmetric) password based encryption (PBE) a secret key
is derived by salting and hashing the password. This key is then used to encrypt communi-
cation between user and server. However, if the server is compromised and an attacker gains
access to the hashed and salted passwords, which also act as keys, all prior communication
can be decrypted.
This paper examines approaches to implement asymmetric PBE. In an asymmetric PBE
scheme a public and a private key is derived from the user’s password. The server only uses
such a public key for encryption, so even if compromised, the adversary is not able to decrypt
anything.
The paper describes an invasive variant of the PBE, which introduces a new key-derivation
function, as well as a non-invasive variant, which can be used with already existing and
deployed key-derivation functions.
Relevance to CREDENTIAL: This concept could be used to derive asymmetric key
material from user’s passwords. Since those keys are asymmetric, an attacker would only be
able to perform limited operations. For example, an attacker would only be able to encrypt
but not decrypt messages.

Especially technologies for distributed password verification could potentially be of interest for
a CREDENTIAL-like system. For instance, a TPASS scheme could be used to securely store
backup or recovery keys for users. However, for the time being we consider such mechanisms
out of scope of the CREDENTIAL wallet, as they can be seen as an independent add-on to the
developed applications and tools.

31

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

4.2 Access to Encrypted Data

In this subsection, we cluster and evaluate Searchable Encryption, Private Information Re-
trieval, Oblivious RAM, and Proofs of Retrievability and Provable Data Possession. More
details on the given technologies can be found in Appendix B.

4.2.1 Searchable Encryption

Search on Encrypted Data [19]
Type of Technology Search
Status Concept Paper (2007)
TRL H - Multiple implementations allow search on encrypted data. For

example: SAP SEEED, Google’s Encrypted BigQuery, and Mi-
crosoft’s Always Encrypted SQL Server

Implementation https://github.com/sashank/jsse (LGPL)
Brief Description: Search on encrypted data usually deals with finding all documents that
are associated with a keyword. The user has to perform a two-step setup process. Firstly,
the user encrypts her documents and, secondly, creates an encrypted database of metadata
about those documents. The encrypted documents and encrypted database are then handed
to a server. To search for documents, the user would send a cryptographically encapsulated
keyword to the server. The server would use it with the metadata database to figure out
which documents should be sent back. There are multiple approaches to realize search on
encrypted data. Those approaches differ in their security, that is how much information they
leak, and their performance characteristics.
Relevance to CREDENTIAL: Since credential might store a huge amount of the user’s
data, search functionality on the ciphertexts would be beneficial.

A very promising approach in the private-key setting to searchable encryption (SE) is sym-
metric searchable encryption (SSE). This can be realized by Fully Homomorphic Encryption
(FHE) [67], Oblivious RAM (ORAM) [72], and Private Information Retrieval (PIR) [46]. These
building blocks offer well-researched security guarantees (without leaking significant information
as, e.g., access and search pattern or index information). At the same time, unfortunately, all of
the mentioned building blocks are very expensive in complexity and considered to be practically
inefficient. (However, current research argues that ORAM is getting more practical [5].)

When one is willing to allow significant leakage (i.e., take reduced security guarantees into
account), one can derive practical SSE schemes using Deterministic Encryption (DE) [19] and
Order-Preserving Encryption (OPE) [26]. Schemes that offer such guarantees are used in, e.g.,
CryptDB [148]. However, it was shown that CryptDB (and their derivates) leak many crucial
information regarding the search on the encrypted data [125].

In the public-key setting (i.e., where any external user can write the encrypted and search-
able data using the public key), one can go for Public-Key Encryption with Keyword Search
(PEKS) [27].

32

https://github.com/sashank/jsse

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

We point to [28] for an overall survey of the topic SE.

Evaluation Criteria

In the following, we briefly describe the evaluation criteria used for searchable encryption.

Security (Security). The security of SE scheme is evaluated in terms of the security model,
leaking access and search pattern, as well as index information.

Efficiency (Usability). Efficiency is measured in terms of communication and computation
overhead.

Single-user/multi-user setting (Usability). A SE scheme can be in the single-user and
multi-user setting (i.e., how many users can write/access data).

Query expressiveness (Usability). The query can have different levels of expressiveness
(e.g., equality of keyword or inner product).

Evaluation

Table 4 gives a detailed overview over current SE schemes with respect to the criteria mentioned
above. (We emphasize that SE is vibrant area of research and we only cover well-established
SE schemes here. However, we want to point out that more recent (theoretical) SE results are
known and under investigation, e.g., [42].)

Song et
al. [163]

Curtmola et
al. [47]

Boneh et
al. [27]

Shen et
al. [162]

Security L M M H
Efficiency L H M L

Single-user/multi-user Single Multi Multi Single
Query expressiveness Equality Equality Equality Inner product

Table 4: Comparison of searchable encryption schemes in terms of the mentioned evaluation
criteria. H, M, and L means high, medium, and low, respectively.

Evaluation Conclusion

A concrete suggestion on which SE scheme to use within CREDENTIAL is highly non-trivial.
It very much depends on the setting and how much leakage is acceptable in order to efficiently
perform searchable encryption. Although Table 4 gives an overview of a selection of well-
established SE scheme, one has to be careful with the details (in terms of security and efficiency)
when one is willing to implement such a scheme in a concrete setting.

33

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

4.2.2 Private Information Retrieval

In general, private information retrieval (PIR) could offer a valuable feature to realize CREDEN-
TIAL’s vision of a privacy-preserving identity management and data sharing platform. This is
because such schemes (partially) hide the access patterns to different resources. Therefore, in
particular when combined, e.g., with hidden or encrypted access control lists, the CREDEN-
TIAL wallet would no longer learn who is accessing which data when.

Private Information Retrieval [70]
Type of Technology Private Information Retrieval
Status Concept Paper (2007)
TRL M - Multiple open source implementations are available.
Implementation http://percy.sourceforge.net/,

https://crypto.stanford.edu/pir-library/
Brief Description: Even if the data is encrypted, a cloud storage provider might use the
access pattern of one or more users to learn something about the data or users. For example,
the access pattern could expose the user’s habits and privileges, or if multiple users access the
same file reveal a collaborative relationship. Private Information Retrieval (PIR) is a method
to access data items without revealing this access pattern. In PIR schemes with multiple
servers, the data can be protected if up to a threshold of servers collude, and queries can
be correctly answered if only a subset of servers responds, while some of these servers are
byzantine (i.e. send malformed/incorrect answers). However, the performance characteristics
are of vital importance of the practicability of such a PIR scheme. As a result, cloud providers
cannot build behavior profiles and learn sensitive information through inference using access
patterns.
Relevance to CREDENTIAL: Private Information Retrieval could be used in CREDEN-
TIAL, so that the cloud wallet does not learn which data the user tries to access. However,
if a data receiver wants to privately access data, the re-encryption and signature redaction
would have to be integrated, which might further limit the efficiency and privacy benefits,
which therefore requires further research.

However, there are fundamental limitations to PIR schemes which render them impracticable
in large scale deployments. Namely, it is easy to see that for a storage server to not learn
any information about which data has been accessed, it is inherently necessary that from the
server’s perspective every stored object and bit has to be treated in an identical way. This
means that the storage server has to touch every stored bit for every single access to the data
and perform a (typically highly efficient) computation on it. The communicational complexity
varies depending on the security requirements and the number of independent storage servers
being used, cf. Table 5.

Evaluation Conclusion

Given the high computational overhead per server, we do not consider PIRs practical for large
scale deployment within CREDENTIAL, as the negative performance or cost impact seems to

34

http://percy.sourceforge.net/
https://crypto.stanford.edu/pir-library/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

1-server
information
theoretic

PIR

k-server
information
theoretic

PIR

1-server
computa-
tional
PIR

k-server
computa-
tional
PIR

Computation per server n n n n

Overall communication n nO(log log k
k log k) O(1)

(amortized)
O(1)

(amortized)
Table 5: Computational and communication efficiency of existing PIR schemes for databases of
size n.

strong. This is particularly true as in our concrete setting, the CREDENTIAL wallet would
additionally have to re-encrypt all potentially accessed data for every user as it would not know
which data is actually accessed, thereby causing an even higher computational overhead.

4.2.3 Oblivious RAM

Oblivious RAM (ORAM) can be seen as an extension of private information retrieval, where
not only the read access patterns but also the write operations are disguised. As such, ORAM
has inherently at least the same costs as PIR.

Oblivious RAMs [72]
Type of Technology Oblivious RAMs
Status Concept Paper (1996)
TRL M - Multiple research implementations, such as ObliviStore or

PrivateFS, were used in relevant environments and compared in
performance.

Brief Description: In contrast to Private Information Retrieval, Oblivious RAMs (ORAMs)
not only allow to read data from but also to write data to a storage service without revealing
any access pattern. ORAM schemes usually involve performing a search for the desired item
as well as inserting a new item, in order to disguise the kind of operation, read or write.
After some number of operations, the data has to be reorganized. Improvements on the
efficiency of this reorganization is the focus of some research. In recent years, the emergence
of cloud computing promoted effort to integrate ORAM into practical implementations, such
as ObliviStore or PrivateFS.
Relevance to CREDENTIAL: ORAMs could be used in CREDENTIAL in two ways.
Firstly, the cloud wallet could use ORAMs to obliviously access data stored on an external
attribute provider. Secondly, a data receiver, such as the user or a service provider, could use
the ORAM method to access re-encrypted and redacted attributes from the cloud wallet.

Despite of its potential positive privacy impact, ORAM is thus currently not recommended to
be used within the CREDENTIAL project. This can also be underpinned by actual implemen-
tations such as PrivateFS [173] or ObliviStore [164]. The former, mounted as a local file system,
achieves throughputs below 100kB/s, and a single-digit number of database queries when used
remotely. The latter outperforms this by a factor of almost 20, but only supports a single client.

35

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Evaluation Conclusion

In either case, the throughputs are currently insufficient for large-scale deployments; yet, a
re-evaluation might become necessary if breakthrough results are found.

4.2.4 Proofs of Retrievability and Provable Data Possession

Provable Data Possession (PDP), introduced in [14], and Proofs of Retrievability (PoR), in-
troduced in [111], are two independently introduced concepts for checking the integrity and
availability of data stored on a remote server. Originally, there were some fundamental differ-
ences between PORs and PDPs. For instance, the former were only intended to allow for a
limited number of checks, while the latter supported an unlimited number of integrity checks.
In PORs, files were first encoded and then stored remotely while PDPs did not require any
encoding, which in turn allowed PORs, in contrast to PDPs, to also correct minor corruptions.
Also, there were subtle differences in the proposed security guarantees. However, in recent
works the two primitives seem to converge to a unified approach, which is also why they are
going to be evaluated as a single tool here.

For details on the technologies we refer to Appendix B.2.3 and Appendix B.2.4.

Proofs of Retrievability (PoR) [111]
Type of Technology Remote Data Checking
Status Concept Paper (2007)
TRL M - There are multiple open source implementations and the per-

formance of a PoR construction was analyzed for example in [29].
Implementation https://code.google.com/archive/p/

proof-of-retrievability/ (BSD license),
https://code.google.com/archive/p/
compact-proofs-of-retrievability/ (BSD license)

Brief Description: Proofs of Retrievability is a method to check if a remotely-stored file
is still available and intact. The objective of this method is to perform the check, while
requiring the user to only store a minimal set of verification data and the storage provider to
perform as few computations as possible. In particular, before uploading small amounts of
data for spot-checking (referred to as “sentinel values”) are appended, the blocks are shuffled
and then encrypted. In order to check the file, the user requests encrypted blocks that contain
sentinel values, decrypts them and verifies the values.
Relevance to CREDENTIAL: PoR could be used in two ways in CREDENTIAL. Firstly,
if the cloud wallet outsources the data storage to an external attribute provider, the wallet
could check if the data is still available and intact at that external entity. Secondly, the user
could check if her data is available via the CREDENTIAL system.

Provable Data Possession (PDP) [15]
Type of Technology Remote Data Checking
Status Concept Paper (2007)

36

https://code.google.com/archive/p/proof-of-retrievability/
https://code.google.com/archive/p/proof-of-retrievability/
https://code.google.com/archive/p/compact-proofs-of-retrievability/
https://code.google.com/archive/p/compact-proofs-of-retrievability/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

TRL M - The performance of the initial PDP construction was analyzed
in the referenced paper and multiple open source implementations
are available.

Implementation https://code.google.com/archive/p/
provable-data-possession/ (BSD license),
https://code.google.com/archive/p/
scalable-and-efficient-provable-data-possession/ (BSD
license)

Brief Description: Provable Data Possession (PDP) is very similar to Proofs of Retriev-
ability (PoR), as it too is a method to check if a remotely-stored file is available and intact,
while trying to keep the computational and storage requirements low for both the client and
the server. In contrast to PoR, PDP were initially designed to support an unlimited number
of challenges and to detect large corruptions of the file. However, in recent approaches both
PoR and PDP converge towards a model that supports an unlimited number of challenges
and even detects small corruptions.
Relevance to CREDENTIAL: PDP, like PoR, could also be used to check if data is
available and intact at the cloud wallet or at an external attribute provider.

Evaluation Criteria

In the following we briefly describe the evaluation criteria used for PORs and PDPs.

Unlimited Verifications (Usability). We will only take into consideration schemes that sup-
port an unbounded number of integrity checks, as we believe that bounding the number
of such checks a-priori is often not possible, in particular in the case of long-term storage.

Verifiability (Security, Usability). Privately verifiable PORs and PDPs only allow the le-
gitimate owner of the data to verify whether they are still available, while in publicly
verifiable schemes this task can be outsourced to a (semi-trusted) third party without
violating the user’s privacy. While publicly verifiable schemes can in particular be also
used by the user herself, the appropriate choice here very much depends on the concrete
use case and type of data being stored.

Computational Costs (Usability). The computational efficiency of a scheme can be mea-
sured regarding the tagging (or pre-processing) costs, as well as the costs for the server
and the client when executing the protocol.

Communication Overhead (Usability). The communication costs determine how much data
needs to be transferred (in addition to the data itself) when storing it on the server.

Storage Overhead (Usability). The storage overhead measures how many bits need to be
stored in addition to the data itself.

37

https://code.google.com/archive/p/provable-data-possession/
https://code.google.com/archive/p/provable-data-possession/
https://code.google.com/archive/p/scalable-and-efficient-provable-data-possession/
https://code.google.com/archive/p/scalable-and-efficient-provable-data-possession/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Evaluation

Table 6 gives a detailed overview over chosen recent POR and PDP schemes with respect to
the criteria mentioned above. Concerning the computational efficiency, we solely focus on the
number e of full-length exponentiations of 2048 bit integers, as well as the number P of required
pairings. This is because those terms usually determine the overall costs of the computations
compared to simple field operations like multiplication or inversion, or point addition on elliptic
curves. If none such operation is required, the computational costs are thus labeled as “small”.

Apart from this, we use κ to denote the security parameter, n to denote the overall number of
files to be stored, and t to denote the number of file elements to be stored within a single tag.
Finally, ` = n/t is the number file blocks and c is the number of file blocks being challenged in
an execution of the protocol.

S-PDP
[13]

SPOR
[158]

EPOR
[176]

SRPDP
[82]

P-PDP
[13]

PPOR
[158]

SRPDP
[82]

Unbounded
Verifications 3 3 3 3 3 3 3

Verifiability Private Private Private Private Public Public Public
Keysize 2048 2048 224 224 2048 224 224

Computation
Tagging 2`κe small small small 2nκe small small

Computation Costs
Server (2ct+ c)e small small small ce small small

Computation Costs
Client (c+ 2)e small small small (c+ 2)e 2P 3P

Communication
Overhead (c+1)κ+h

(2t+ c+
1)κ+ h

(c+ 3)κ (t+ 1)κ (c+ 2)κ (2t+c+2)κ (t+ 1)κ

Storage Overhead `κ `κ+ tκ `κ `κ ≥ nκ `κ+(t+1)κ `κ

Table 6: Evaluation details for POR and PDP schemes.

Evaluation Conclusion

Based on our analysis, the schemes of Xu and Chang [176] is recommended for privately verifiable
scenarios, and the schemes of Hanser and Slamanig [82] are recommended for scenarios requiring
private or public verifiability, respectively. Concerning the concrete setting of CREDENTIAL,
we consider PDPs and PORs as interesting extensions of the core functionality. However, given
the inherently necessary trust assumptions coming from our PRE based approach, we believe
that such schemes are not stringently required for the wallet.

38

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

4.3 Other Technologies

In this subsection, we cluster (Un-)linkable Pseudonyms, Secret Sharing, and Verifiable Com-
puting and provide evaluations for Secret Sharing and Verifiable Computing. In Appendix B,
we provide more details on the described technologies.

4.3.1 Unlinkable Pseudonyms

In the following we briefly summarize the concept of unlinkable pseudonyms; for a detailed
description, we refer to Appendix B.3.2.

Unlinkable Pseudonyms [36]
Type of Technology Unlinkable Pseudonyms
Status Concept Paper (2015)
TRL L - The construction has been presented in the paper, but there

is no implementation.
Brief Description: If data from one server should be exchanged with another server, these
items have to be linkable. However, to preserve privacy, especially sensitive data should be
unlinkable.This paper describes an approach, where a central converter is used to establish
individual user-pseudonyms for each server. These pseudonyms are derived from unique
main identifier that each user has. The converter is the only entity that can link pseudonyms
together, but it still does not learn pseudonyms or user identifiers involved. The converter
only learns which servers want to exchange data.
Relevance to CREDENTIAL: By making use of this concept, the individual components
of the CREDENTIAL architecture as well as external services would not be able to link the
user’s data without express consent of a central conversion service. This could contribute
towards the goal of improve the user’s privacy.

Unlinkable pseudonyms, in all their different flavors—i.e., also without the aforementioned
conversion service as described, e.g., by Camenisch et al. [35]—, are important features for
privacy-enhancing systems and applications. However, we omit a detailed evaluation here, as
they are not inherently needed for realizing the use cases and pilots identified in CREDENTIAL.
This is, because all the services considered in the project are stateful or need to unambiguously
identify the user, and therefore the use of pseudonyms is not of direct benefit for the user, as a
returning user needs to be recognized in either scenario. Furthermore, there is currently no need
for users to, e.g., link different accounts with different service providers together. Finally, given
the low maturity level of the technology, the implementation and adaption overhead might be
too high for the scope of CREDENTIAL. However, for other use cases and future developments,
they might offer a valuable extension to the features of the CREDENTIALwallet.

4.3.2 Secret Sharing

39

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Secret Sharing [159]
Type of Technology Secret Sharing
Status Concept paper (1979)
TRL H - Secret sharing is widely used and integrated into commercial

products.
Implementation https://launchpad.net/libgfshare (MIT license),

http://point-at-infinity.org/ssss/,
https://github.com/rxl/secret-sharing (MIT license)

Brief Description: A secret, such as a key, is split into shares, which are distributed
amongst a group of participants. The shares of a sufficient number of participants have to
be combined, in order to reconstruct the secret.
Relevance to CREDENTIAL: In case the user’s key was lost, secret sharing could be
used to recover the key, if shares were distributed to multiple semi-trusted entities, like family
members or secure servers.

As described in detail in Appendix B.3.3, secret sharing schemes allow one to decompose data
into multiple shares such that only predefined qualified subsets of shares are able to reconstruct
the original data, while any non-qualified subset of shares does not learn any information about
the shared information. In theory, arbitrary “access structures”, i.e., sets of qualified subsets of
shares can be realized, as long as every superset of a qualified set is again qualified. However,
when using secret sharing to store data across multiple storage nodes, we believe that threshold
schemes are the most reasonable choice. Such schemes realize access structures where, for some
predefined threshold value t, every set of at least t + 1 shares can be used for reconstruction,
while every set of at most t shares cannot. In the following evaluation we will thus focus on
such schemes, as other access structures would lead to the situation that (a priori) more trusted
nodes would receive more information, which would make them more interesting for attackers,
which in turn would again decrease the potential trust.

Evaluation Criteria

Many extensions to the basic functionality of secret sharing schemes can be found in the lit-
erature. In the following, we briefly discuss those which would be relevant when using such
schemes within the CREDENTIAL wallet.

Verifiability (Usability). A secret sharing scheme is verifiable if the storage nodes can—
interactively or non-interactively, i.e., with or without communication among each
other—verify whether the distributed shares are consistent with each other. In particular,
when using secret sharing for distributed storage scenarios, this allows to detect malicious
dealers (the parties decomposing the original data), and prevent them from storing incon-
sistent “garbage” on the storage servers, thereby preventing other parties from accessing
the data.

Auditability (Usability). Auditability is closely related to proofs of retrievability and proofs
of data possession, cf. Appendix B.2.2 and Appendix B.2.4. It allows the legitimate

40

https://launchpad.net/libgfshare
http://point-at-infinity.org/ssss/
https://github.com/rxl/secret-sharing

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

owner of some data to efficiently and remotely verify whether his data is still stored and
available on all storage nodes. Depending on whether such checks can be outsourced to
a third party without compromising data privacy, a scheme is publicly or privately
auditable. Furthermore, in batch auditable schemes the availability of large amounts of
stored data can be verified in a single protocol run at very low (amortized) costs for the
servers and the verifiers.

Byzantine Fault Tolerance (Usability). In particular, when multiple users might have write-
access to the same shared file at the same moment, inconsistencies in the stored data might
occur. Byzantine fault tolerant (BFT) systems are able to solve this issue. While effi-
cient solutions for replica-based storage solutions have been existing for quite some time,
research for erasure-coding or secret sharing based systems has only started more recently.

For evaluating the efficiency of secret sharing schemes, the following three properties need to
be considered.

Computational Efficiency (Usability). In particular, the computational costs per data block
are a crucial evaluation criterion, when storing and retrieving large amounts of data.

Storage Efficiency (Usability). Again, in particular when storing large amounts of data, the
required expansion factor per server may significantly determine the costs of the overall
system. That is, this criterion considers the ratio between the size of the share stored on
a single server and the size of the original data. For instance, this ration would be 1 in a
fully replicated system.

Communication Efficiency (Usability). Besides the data that actually needs to be stored
on each server, certain secret sharing schemes (or extensions thereof) require additional
data to be transferred, e.g., for verifying the consistency of the distributed shares. As
bandwidth is often a limiting factor on the end user’s side, the overall required bandwidth
should be as small as possible per share data block.

Finally, the security of secret sharing schemes is analysed based on the following criteria:

Computational vs. Information Theoretical Privacy (Security). Computational privacy
means that an adversary having access to only a non-qualified subset of shares is not able
to break the confidentiality of the stored data as long as some certain problem is com-
putationally hard. On the other hand, information theoretical privacy means that even
an attacker having access to a non-qualified subset of shares cannot infer any information
about the stored data even if it has unlimited computational power. In particular, when
storing long-term sensitive or highly classified information, information theoretical privacy
is to be preferred.

Proactivity (Security). Secret shared data remains secret as long as an attacker is not able to
compromise more than t of the storage nodes. As this might be a very strong assumption
for long-term storage, proactive steps to re-share the data (in a way that guarantees that

41

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

data leaked before the re-sharing are of no use to the adversary any more) are important.
We therefore check whether proactive security steps are available for given secret sharing
schemes.

Relation of t and n (Security). Secret sharing schemes have two main parameters: the over-
all number of storage nodes, n, and the threshold value of nodes required to reconstruct,
t. In the literature, it is often recommended to set t ≈ n

2 . This is because an adversary
might then corrupt have of the nodes while still not learning any information, while on
the other hand also a denial of service attack on half of the nodes would not prevent the
legitimate owner of the data to retrieve the stored files. We therefore also consider the
imposed restrictions on the relation of n and t in our evaluation, as a higher “imbalance”
might lead to less security or lower efficiency.

Evaluation

Because of the large amount of secret sharing schemes presented in the literature, we omit a full
evaluation of the existing schemes here. This is also due to the fact that schemes are often not
proposed including all their features, but various extensions (e.g., for proactivity or auditability)
are often proposed independently in the literature. We therefore propose one potential set of
building blocks that are compatible with each other and perform well in (most of) the above
evaluation criteria.

• The secret sharing scheme proposed by Shamir [159] is information theoretically pri-
vate. Furthermore, is is perfect, meaning that the shares that need to be sent and stored
on each server have exactly the same size as the original data message; it can be shown
that this cannot be improved for information theoretically private schemes. By itself, the
scheme does not make any assumptions on the relation of n and t.

• An extension proposed by Krenn et al. [115] allows for interactive verifiability at
negligible amortized (computational and communicational) costs for large data sets. The
extension required n ≥ 3t+ 1.

• Demirel et al. [49] proposed an efficient extension for public auditability. For block-
sizes larger than 64 bits, the scheme has practically constant communication efficiency
and also high efficiency on the server sides. The scheme requires n ≥ 2t+ 1.

• The extension of Gupta and Gopinath [80] allows to proactively re-share secrets for
Shamir’s secret sharing scheme for n ≥ 2t+1. However, similar to all other proactive steps
found in the literature, the scheme comes at very high computational and communications
costs between the servers.

4.3.3 Verifiable Computing

Verifiable Computing [65]

42

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Type of Technology Verifiable Computing
Status Concept paper (2010)
TRL M - There are multiple implementations with performance mea-

surements.
Implementation http://www.pepper-project.org/#source (BSD license)
Brief Description: In many scenarios, a weak client wants to outsource a computation
to a more powerful worker. An example would be a mobile phone that accesses computing
resources provided by a cloud service. However, the client has to be sure the requested
function was performed correctly. With the concept of verifiable computing, the client is
given the means to efficiently verify, whether the requested function was executed correctly,
or not. In addition, in the approach presented in the referenced paper, the worker does not
learn anything about the input or the function it is executing.
Relevance to CREDENTIAL: Verifiable computing could be used to securely outsource
computation tasks.

Let us consider a party (called the client) which specifies some function f and has some input
x (which will be outsourced to some third party called the server). At some point the client
requests the server holding the data to evaluate the function f on the input x and the server
returns y = f(x) to the client. Now the client wants to ensure that the server indeed computed
y = f(x) correctly without having to re-perform the evaluation of the function on x locally.
A client should only accept y in case of correct computation, but reject any incorrect y’ with
overwhelming probability. Verifiable computing (cf. [170, 43] for an overview) subsumes a
number of different techniques which allow a client to be convinced of the correct computation
of the server in the aforementioned scenario. Thereby, it is important that the client does not
need access to the data locally and one requires that all means required by the client to check
or ensure the correctness is more efficient than a local re-evaluation of the function f (at least
in an amortized setting).

Evaluation Criteria

Public vs private verifiability (Usability). Either anyone can publicly verify the correct-
ness of some computation performed by a server or the client requires some dedicated
secret to check a computation for correctness.

Interactive vs. non-interactive (Usability). A client may either probe the server several
times on the computation performed by the server (using several rounds of communi-
cation) until the probability that the server can convince a client of the correctness of
an incorrect computation is reduced to some acceptable small probability. In the non-
interactive setting, the server simply returns a certificate of correct computation (a proof)
which can locally be checked by the client and the entire protocol thus only requires a
single round of communication.

Expressiveness (Usability). Depending on the used approach the class of supported func-
tions f can differ significantly. In the best case one a technique can deal with arbitrary

43

http://www.pepper-project.org/#source

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

arithmetic circuits (functions) or even arbitrary C code. Other techniques restrict the
class of functions to polynomial functions of some fixed small degree (e.g., to linear or
quadratic functions).

Communication (Usability). The number of rounds of communication between the client
and the server and whether the communication cost depends on the concrete function f
or not.

Server computation (Usability). The computational overhead required by the server to
perform the entire protocol. Server overhead can usually assumed to be much higher than
the cost of evaluating the function as the server is assumed to run in the cloud and can
be efficiently scaled to the required needs.

Client computation (Usability). Considers the effort of the client compared to locally per-
forming the computation. The efficiency is often considered in an amortized sense, i.e., the
client has some setup costs which are performed once and then by verifying computations
on different inputs the costs of this setup are amortized over time.

Authenticity (Security). One requires that a malicious server will not be able to convince
a client of the correctness of a computation when the result is not correct. Formally, one
distinguishes different types of an adversary. While a weak adversary is only allowed to
submit one try, an adaptive adversary is given multiple tries where it learns for each try
whether the client did accept or not.

Privacy (Privacy). Privacy comes in different flavors. Firstly, privacy can be related to the
input of the computation from a server’s point of view (so called input privacy). It requires
that the server performing the computation does not learn the data on which the server
is computing. Secondly, privacy can be related to the client (so called output privacy). It
requires that client checking the correctness of the computation does not learn anything
about the input to the computation.

Evaluation

There is a large body of literature on different techniques to realize verifiable computing and
since verifiable computing does not constitute a core cryptographic technique within CREDEN-
TIAL, we omit a full evaluation of all existing techniques. We just provide a brief overview of the
different classes of techniques and we refer the reader to [170, 43, 32] for a more comprehensive
overview:

• Approaches based on interactive proofs or arguments: These approaches typically
require many rounds of interaction which limits the fields of practical application quite
significantly (cf. [170]).

• Approaches based on non-interactive proofs or arguments: This approach relies
on SNARKS and efficient ways of encoding the computations and is used by the main
verifiable computing approaches available today like Gepetto or Pinoccio (cf. [170]).

44

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Approaches based on fully-homomorphic encryption: This approach can be gener-
ically constructed from garbled circuits and any FHE scheme [65]. Since FHE, however,
still lacks practical efficiency, this approach cannot be considered efficient as of today.

• Approaches based on homomorphic authenticators: This approach is based on
homomorphic MAC or signature schemes [43]. There are different constructions under
various assumptions available that support different classes of functions (from linear poly-
nomials to polynomials of arbitrary degree). For restricted classes of functions this ap-
proach is the most practical, although the client computation can only be made good in
an amortized setting. Nevertheless, this approach is often viable when output privacy is
of interest.

Evaluation Conclusion

In conclusion, verifiable computing could be used to securely outsource computations to a party
that is not fully trusted, such as the CREDENTIAL cloud service in our case. Even though
verifiable computing not a core technology for CREDENTIAL, it might be used to construct
cryptographic primitives that are relevant for this project, and, therefore, verifiable computing
is of interest for further research.

4.4 Section Conclusion

In this Section, we described and evaluated additional cryptographic technologies that are rele-
vant to CREDENTIAL. For the evaluated technologies, we presented recommendations within
the subsections. Full details for many specific technologies which are relevant for CREDENTIAL
are given in Appendix B.

45

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

5 Authentication to the Cloud

One of the core elements of CREDENTIAL is to provide strong authentication to the cloud
while high levels of privacy and usability are achieved. To this end, in this chapter we first
introduce the basics of authentication, towards analyzing and evaluating relevant technologi-
cal frameworks that enable strong authentication to the CREDENTIAL wallet. The selected
frameworks allow the implementation of different authentication factors, which in turn provide
different levels of usability and security; selected frameworks are introduced and evaluated in
Section 5.2. Furthermore, despite the strength of the analyzed solutions, security at the client
side, and particularly, when considering mobile devices could be drastically enhanced by taking
advantage of secure HW-supported cloud authentication. Thus, in Section 5.3 we also analyze
state of the art underlying authentication technologies that can support the secure execution of
cryptographic algorithms while providing secure storage of the cryptographic material and as-
sociated credentials. For each cluster of technologies we first summarize in a fact sheet the main
features offered by each technological framework. Secondly, we introduce a detailed evaluation
criteria derived from the high level criteria introduced in Section 2. Afterwards, we perform
the evaluation of each cluster of technologies, and finally, we conclude the chapter by provid-
ing a recommendation on technologies that could be implemented within the CREDENTIAL
architecture.

5.1 Authentication Factors

The process allowing one entity to establish the identity of another entity is known as “Au-
thentication” and it represents a major barrier for an attacker to circumvent a system, i.e. the
more robust and sophisticated an authentication method is, the harder to be deceived. The
implementation of strong authentication is an essential part of any security system [54] im-
plying the combination of two or more elements that could be based on what you know (e.g.,
PIN, passwords, pass-phrases, etc.), what you have (e.g., keys, tokens, smart cards, etc.), and
what you are - based on biometric methods that evaluate physiological attributes or behavioral
singularities (e.g. fingerprints, iris, voice, etc).

In what follows we further describe the main authentication factors that could be implemented
within the selected authentication frameworks which are later evaluated in Section 5.2.

• Knowledge Factors: Something the user knows, such as passwords, PINs, or secret
questions.

• Possession Factors: Something the user possesses.

– One-Time Passwords: One-Time Passwords (OTP) can be generated time-based or
event-based. OTP are generated on an external token with a display, or on a smart
phone. The particular generation process is bound to a user and paired with a server.
Therefore, the possession of the device can be verified by comparing the device’s OTP
and the server’s OTP. See OATH for further details.

46

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

– SMS-TAN: A server creates an OTP, usually denoted as TAN, and sends it to the
user’s phone. The user then returns the TAN through another communication chan-
nel to prove its reception. The user’s phone, or more precisely its SIM, cover the
possession factor.

– Challenge-Response: The remote entity creates a so-called challenge, which is trans-
mitted to the user. The user then applies some kind of cryptographic method to
the challenge and returns the outcome as response. Since the cryptographic oper-
ation usually involves a secret key that is bound to the user, the server is able to
verify possession of that key material by examining the response. Hardware security
tokens or software applications can be used to perform the involved cryptographic
functions. Some of the technologies described below can be used to implement this
approach: FIDO describes a possible implementation; Trusted Platform Modules and
Trusted Execution Environments securely store and operate on key-material; PKCS
#11 and ISO 24727 can be used to communicate with external tokens that provide
cryptographic material and operations.

• Inherence Factors: Something the user is. This is usually described by biometric char-
acteristics, which can either be physiological or behavioural. Physiological biometrics,
consists of measurements taken from data obtained as part of the human body; leading
techniques in this category are fingerprint, hand geometry, facial recognition, iris and
retina recognition. Behavioral biometrics consist of measurements taken from the user’s
actions, many of them are indirectly measured from the human body. The leading behav-
ioral techniques are voice recognition, handwritten signature, and keystroke dynamics.

5.2 Authentication Technologies

In this subsection we briefly introduced the selected authentication frameworks, namely, FIDO
UAF, FIDO2F, Mobile Connect, OATH and SQRL. These frameworks aim to replace user
names and passwords by implementing (passwordless) strong authentication mechanisms based
in possession and inherent factors; these frameworks operate using a challenge-response authen-
tication model. We evaluate the aforementioned technologies based on the high level evaluation
framework defined in Section 2. The aim of this assessment is to contribute to a better under-
standing of which authentication framework is most suitable for providing secure access to the
CREDENTIAL wallet considering its application scenarios.

FIDO UAF (Universal Authentication Framework) [57]
Type of Technology Authentication Framework
Status Framework, Specification (2014), Version 1.0
TRL H - FIDO UAF has been deployed in operational environments, for

example by Google, and open source implementation are available.
Implementation https://github.com/eBay/UAF (Apache 2 license),

https://fidoalliance.org/certification/fido-ready/,
https://fidoalliance.org/certification/fido-certified/

Brief Description: The FIDO UAF enables multi-factor security, where online services are
able to specify which types of factors are sufficient.

47

https://github.com/eBay/UAF
https://fidoalliance.org/certification/fido-ready/
https://fidoalliance.org/certification/fido-certified/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The Authentication Framework defines software layers for client- and server-side, as well as
a protocol for their interaction. During registration of a service, the user generates a key
pair on her device and sends the public key to the service. To authenticate a user, the server
sends a challenge which has to be signed with the corresponding private key. Access to this
private key is only granted after the user performed local authentication, such as fingerprint
verification, with the required factors.
This process requires client software and certified hardware, which would be an obstacle for
user adoption. However, major corporations are members of the FIDO alliance, so hardware
and software availability might not be a problem.
Relevance to CREDENTIAL: FIDO UAF could be combined with identity protocols that
rely on out-of-band authentication. Since UAF client and server components are provided as
separate software, they would just have to be integrated.

FIDO U2F (Universal Second Factor) [58]
Type of Technology Authentication Framework
Status Framework, Specification (2015), Version 1.1
TRL H - FIDO UAF has been deployed in operational environments, for

example by Google, and open source implementations are avail-
able.

Implementation https://github.com/google/u2f-ref-code,
https://fidoalliance.org/certification/fido-ready/,
https://fidoalliance.org/certification/fido-certified/

Brief Description: FIDO U2F defines strong authentication via a second factor that
augments traditional authentication methods. U2F specifies a narrow set of functionality
that is mainly concerned with the generation of key pairs and signatures on external devices.
Interaction with those cryptographic operations is possible through a Javascript API in the
browser. The authentication process is very similar to the one described in FIDO UAF.
Relevance to CREDENTIAL: FIDO U2F could be combined with identity protocols
that rely on out-of-band authentication.

Mobile Connect [79]
Type of Technology Authentication Framework
Status Version 2.0
TRL H - Since the solution was introduced at Mobile World Congress

2014, 34 mobile network operators (MNOs) have launched the
service in 21 countries, with plans for additional launches and
trials to follow in 2016 and beyond.

Open Source Imple-
mentations

https://developer.mobileconnect.io/content/
sdks-and-test-applications

48

https://github.com/google/u2f-ref-code
https://fidoalliance.org/certification/fido-ready/
https://fidoalliance.org/certification/fido-certified/
https://developer.mobileconnect.io/content/sdks-and-test-applications
https://developer.mobileconnect.io/content/sdks-and-test-applications

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: Mobile Connect is a user authentication and identity service based on
the OpenID Connect/OAuth2 standards. Mobile Connect is provided by individual mobile
network operators and delivered through a standardised technical interface. Mobile Connect
basic usage provides a one factor authentication based on the possession of a mobile number.
It supports three different authenticators to do so:
An SMS+URL authenticator is an SMS sent to the user’s device with a unique one-time only
URL that the user selects to prove that they are in possession of the device and have access
to the SMS.
USSD (Unstructured Supplementary Service Data) is a protocol used by mobile networks
to communicate with a terminal (mobile device). The operator will push a message to the
terminal and can require a response. The user’s device will display a message such as "Press 1
for OK. Press 2 for Not OK". If a user has access to the mobile device and is able to respond
(correctly) to it, they will be authenticated.
SIM applets are applications that are stored within the SIM card and run on the mobile
phone. When an authentication request occurs, a binary SMS will be sent to trigger the SIM
applet. Once triggered, it will prompt the user for an input such as “Press OK to continue”
or "Please enter your PIN". The SIM Applet will send a response back to the operator to
validate the user.
In all cases the user must needs to be connected to mobile network. The Mobile Connect
framework also considers the usage of biometric factors, but these are dependent on mobile
network operators’ local authenticator implementations.
Relevance to CREDENTIAL: Mobile Connect could be considered as one of the alter-
natives to the authentication protocol as it provides a passwordless experience, with certain
level of identity assurance.

OATH [97]
Type of Technology Authentication Reference Architecture
Status Framework (2007), Version 2.0
TRL H - Multiple implementations are used in operational environ-

ments, for example by the Google Authenticator and integrated
into Forgerock’s OpenAM.

Implementation https://github.com/google/google-authenticator,
https://github.com/google/google-authenticator-android
(Apache License),
https://github.com/bdauvergne/python-oath (BSD 3-clause),
https://github.com/archiecobbs/oathtoken

Brief Description: OATH describes a reference architecture where open standards are
used to adopt strong authentication. This reference architecture includes a client framework,
which defines how client applications perform authentication methods by communicating with
authentication tokens. Furthermore, it describes a validation framework, a risk evaluation
framework, a provisioning and management framework, as well as a common data model.
The innovative focus lies on research and integration of a one-time password algorithm that
has event-based, time-based and challenge/response variants.

49

https://github.com/google/google-authenticator
https://github.com/google/google-authenticator-android
https://github.com/bdauvergne/python-oath
https://github.com/archiecobbs/oathtoken

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: The OATH Reference Architecture provides a broad
overview and might serve as an introduction into relevant topics and technologies.

Secure Quick Reliable Login (SQRL) [69]
Type of Technology Authentication Specification
Status Standard (Draft)
TRL M - This concept has been realized in multiple Implementation for

different platforms.
Implementation https://www.grc.com/sqrl/implementations.htm,

https://github.com/geir54/android-sqrl (GPL 3),
https://github.com/geir54/php-sqrl (GPL 3)

Brief Description: A highly secure, comprehensive, easy-to-use replacement for user-
names, passwords, reminders, one-time-code authenticators... and everything else. A high
level vision of the protocol:
“The website’s login presents a QR code containing the URL of its authentication service,
plus a nonce. The user’s smartphone signs the login URL using a private key derived from
its master secret and the URL’s domain name. The Smartphone sends the matching public
key to identify the user, and the signature to authenticate it.”
Relevance to CREDENTIAL: A very convenient implementation of secure authentica-
tion; Identifies crypto mechanisms for the convenient sharing of private keys between several
devices. This specification helps to prevent service providers from tracking customers.

In the following we briefly introduce the criteria used in our evaluation framework, afterwards we
use these criteria to concretely evaluate the FIDO UAF, FIDO U2F, Mobile Connect, OATH
and SQRL technologies. Finally, we discuss the most suitable authentication approaches for
CREDENTIAL and its corresponding implications.

5.2.1 Evaluation Criteria

Privacy Criteria: Although many definitions of privacy exist, we consider the privacy criteria
as the extent to which the user is given the control of his/her data; that is, that user is informed
and gives his/her consent about what data is being shared, for which purposes and to which
services.

Unlinkability (Privacy): Users being able to perform two or more transactions without those
transactions being associated to the same user.

Minimal information disclosure (Privacy): As indicated in the eIDAS regulation, authen-
tication for an online service should only consider processing those data that are relevant
and not excessive to grant access to such as service.

User consent (Privacy): This criterion provides information whether a user is informed and
consequently asked for her consent to share her data during the authentication process.

50

https://www.grc.com/sqrl/implementations.htm
https://github.com/geir54/android-sqrl
https://github.com/geir54/php-sqrl

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Security: It is strength of an authentication system in terms of covered risk and its efficiency
to resist potential attacks, considering the risk they represent and its sophistication. In the
authentication framework is relevant by means of providing the appropriate mechanisms to
assure that authentication through fake or invalid credentials cannot be successful and at the
same time providing secure communications protocols that will safeguard the information being
transmitted from any malicious attacker. For the purpose of this evaluation we consider the
following properties:

Integrity (Security): Ability of protecting exchanged authentication information from being
altered by (malicious) unauthorized parties.

Confidentiality and data leakage (Security): The communication between the authenti-
cating client and the authentication server should be done via the establishment of a secure
communication channel. Furthermore, attacks to centralized databases storing sensitive
data, such as, biometric data, result in both: high associated risks and great responsibility.

Unforgeability (Security): Capability of a solution to avoid impersonation, use of fake or
revoke credentials, this includes the capability of revoking credentials.

Mutual authentication (Security): By means that the user authenticating can be assured
that there is a legitimate entity behind the authentication server.

Trust assumptions and assurance levels (Security): This criterion will provide informa-
tion of the trust assumptions needed in the authentication framework (trusted third par-
ties) and insight of the strength of the authentication technologies suitable in each frame-
work

Usability Criteria: Authentication system’s quality of being user-friendly and closer to user
needs and requirements, including acceptability, performance and ease of use. For instance,
users might be reluctant to adopt novel solutions, if they are not able to authenticate them at
the first try and in a reasonable time.

Performance efficiency: In terms of amount of resources needed by the authentication solu-
tion such as storage, CPU power, bandwidth, latency, etc.

Convenience for user (Usability): The quality of being able to meet the needs and expec-
tations of a particular user segment for instance general public.

Integration Effort Criteria: Suitability to the CREDENTIAL architecture and its application
scenarios in terms of how much effort is needed to integrate the authentication technology.

Implementation difficulty (Integration effort): In terms of technical requirements to be
fully deployed and functional, and cost impact of the authentication system implementa-
tion effort.

51

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Extensibility (Integration effort): This criterion describes the feasibility in extending the
authentication framework which may be required by specific application domains. In this
regard, the framework could potential extensions be integrated.

Interoperability (Integration effort): Convenience for the developer regarding existing in-
frastructure/services, etc. Costs and dependencies: economic impact of the technology
in the overall authentication system (e.g. implementation costs, maintenance, etc.) and
dependencies with regard to third party services or intermediaries fees.

Technology maturity and adoption levels (Integration effort): It provides an insight of
the readiness level of the technology and its level of adoption and its practicability in terms
of available libraries and licensing models.

5.2.2 Evaluation

FIDO Universal Authentication Framework (UAF) is an authentication framework that
allows the implementation of secure authentication while providing enhanced privacy and high
level of usability. In particular, this framework aims for a passwordless authentication, thus,
enhancing security with multifactor authentication based on inherent and possession factors.
FIDO UAF provides better end-user experience by preventing the burdensome of password
management not only for users but for identity providers as well. Furthermore, FIDO pro-
vides the functionality of transaction confirmation; and decouples user verification from the
authentication protocol.

Privacy: FIDO UAF aims at providing privacy in terms of minimal information disclosure, the
FIDO UAF does not require a unique ID per device, instead it associates the authenticators
to accounts in the relying party; and in this regard FIDO provides pseudonymity but not
unlinkability. One of the mains strengths of FIDO UAF is that it avoids the collection and
storage of biometric and other personal identifiable information. Furthermore, user consent is
required in all actions.

Security: FIDO UAF provides end-to-end security as the framework relies on the use of asym-
metric key cryptography, which enables secure communication providing integrity, confidential-
ity and unforgeability, as well as protecting the system from phishing and Man-in-the-middle
(MITM) attacks. FIDO’s client generates a key pair and the public key is sent to the authen-
ticating server. Within the authentication process, the FIDO server sends a challenge which is
signed by the client demonstrating the possession/ownership of the private key. Despite its se-
curity strengths, the FIDO authenticators may present different assurance levels. In particular,
FIDO authenticators used for user verification rely on the existence of a trusted platform/mod-
ule or secure element to store and protect key material (i.e. private keys). Furthermore, FIDO
allows integration with different authentication technologies such as biometrics which are used
to unlock the private key and which technically imply different security and maturity levels
that can be indicated in a policy to describe the required or accepted authenticators. Taking
the biometrics example, the biometric data is stored and verified locally and never transmitted
the server, which minimizes the risks of potential massive biometric data leakages but on the

52

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

other hand the security and protection of biometric data relies totally on the client side which
is beyond FIDO’s specification.

Integration effort: There exist mature and open source implementations of FIDO UAF which
makes FIDO a suitable and relatively not expensive solution. FIDO supports integration with
existing IAMs such as OpenSSO, however the implementation of FIDO servers and FIDO au-
thenticators is needed. Its readiness for adoption has been proved by its widely deployment in
solutions such as Google and Visa. The implementation effort, involves different dependencies
w.r.t. OS versions, browsers and FIDO equipped devices (i.e. certified hardware). Finally,
FIDO simplifies integration and extensibility, protocols and APIs support the inclusion of ad-
ditional authentication methods, protocols and authenticators.

Usability: A high level of usability for end users and services provides is provided by means
of passwordless authentication; user verifications are done through different kinds of authenti-
cators installed which, are based on the device capabilities, for instance voice and fingerprint
authentication.

FIDO Universal Two Factor Authentication (U2F) is a FIDO Alliance open protocol
which provides strong authentication using asymmetric key in a challenge-response model. Un-
like UAF, U2F does not work with different authenticator factors but it is limited to possession
factors, concretely token-based authentication.

Privacy: User consent is required to log in to a particular website, but there exists no evidence
that the user is informed about which data is being shared by the U2F such as app_id or
registration of the device which in turns enables linkability. Open implementations such the
one provided by google may possess additional privacy risks.

Security: U2F uses asymmetric key mechanisms to provide secure authentication. It implements
a challenge-response model which relies on the use of a physical token to authenticate the user.
The token generates the public/private key pairs and signs the challenge.

Usability: U2F provides usability in terms of being a passwordless solution, however, considering
that users need to carry on an additional device (i.e. token), the levels of usability provided by
tokens are undesirable for CREDENTIAL.

Integration effort: There exist mature implementations of the U2F; Nevertheless the client
side need first to have a U2F token with a client side application that would act as a bridge
between the token and the web API. Server side open implementations are available which
can considerably reduce the effort; however, implementations provided by google may have
additional dependencies such as the users having a google account.

Mobile Connect is an authentication framework based in OpenID Connect standards, which
provides SIM-based authentication (i.e. the possession of a mobile number). It allows the
implementation of secure authentication and high level of usability by means of passwordless
authentication. Authenticators are either based on SMS, USSD or SIM toolkit. Additionally,
local user verification through the use of biometrics is available by some MNOs.

Privacy: Mobile connect provides privacy by means of minimal information disclosure and user
consent. The MNO confirms user credentials and user is asked to give consent for the sharing

53

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

of his/her information. Mobile connect does not provide unlinkability, even though it claims to
provide certain level of anonymous authentication is done through mobile phone authentication
which is associated to user credentials and the intermediary (i.e. MNO) is able to learn about
user’s authentication to services provides.

Security: Mobile connect aims at reducing frauds by assuring that a real person is behind the
account, which possess a device and a mobile number (SIM card). It offers three different levels
of security assurance supporting three kind of authentication methods, namely SMS, USSD or
SIM.

Integration effort: There exist mature and open source implementations of Mobile Connect
which makes it a suitable solution, however costly due to the need of MNOs involvement as
intermediaries. Its readiness for adoption has been proved by its widely deployment by 34
network operators in 21 countries. The implementation effort, involves dependencies on MNOs
and users having an enabled SIM card. The high level of usability for end users and services
provides is provided by means of passwordless authentication.

SQRL is an authentication framework which operates using a challenge-response model with
asymmetric encryption. SQRL aims to replace usernames and passwords to minimize the dis-
closure of personal information. To achieve this, SQRL stores only a set of public keys which
are used to verify the signature of an authenticator. It is assumed that if public keys are lost,
this will only posses a minimum threat to the privacy and identity theft of users. Furthermore,
SQRL aims to improve usability by implementing QR codes that need to be scanned for a user
to be logged in.

Privacy: SQRL provides privacy in terms of minimal information disclosure, the identity re-
quired by the SQRL authentication server is derived from the master key stored in user’s SQRL
application. SQRL can provide pseudonymity but no unlinkability, user’s transactions are as-
sociated to user’s account which in turn is associated to the public key stored at the server side.
User consent during authentication is requested.

Security: SQRL provides secure authentication with the use of asymmetric key cryptography.
The client application derives site specific private/public key pairs from a master key and the
domain, which decreases the probability of a MITM attack when modifying the website domain;
nevertheless the real time MITM attack cannot be prevented. SQRL implements a challenge-
response mechanism which generates a long random nonce encoded into a QR code which
prevents replay attacks. The SQRL application reads the challenge and generates a signed
response that can be verified with the public key stored at the authentication side. Similarly to
FIDO, the master key needs to be protected. SQRL client uses SCrypt (a password-based key
derivation function [144]) to encrypt the master key with a password.

Usability: SQRL does not works in offline mode but the implementation of QR-codes provide
users with high usability levels. Users only need to manage a single password for the master
key which is stored locally in the SQRL client device. On the downside, a single user cannot
have more than one account in the same website using the same master key, as the key pairs
are derived from the master key and the website domain.

54

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Integration effort: Very few implementations of SQRL exist which do not cover the major
platforms, for is potential adoption the SQRL client application needs to be available for the
major mobile platforms.

OATH is an open authentication framework, which operates using a challenge-response model,
and supports the HOTP, OCRA and TOTP algorithms. OATH supports hardware-based token
as well as the so called soft tokens. Credentials can therefore be embedded into SIM cards and
mobile phones TPM. OATH provides authentication of users, devices and transactions.

Privacy: OATH provides little privacy in the sense that high levels of linkability are present
by storing users profile information as well as the storage of unique identifiers, where no min-
imal information disclosure is guaranteed. Authentication information is stored in databases
which could also be vulnerable to data breaches. Additionally, the three validation models (i.e.
distributed, centralized and wallet) allow the validation side to learn about users’ activities.

Security: OATH’s specification allows strong authentication through the integration of different
authentication methods based on symmetric key challenge/response, PKI, OTP, biometrics,
and cookies; authentication tokens (hardware and software based) which could be embedded
into hardware tokens, SIM cards, mobile devices TPM; and a set of authentication protocols to
provide secure communication such as SSL/TLS, HTTP Auth, Kerberos and WS-Security. High
levels of assurance could be achieved by monitoring transactions and user behavior which may
result in additional privacy concerns regarding users IP addresses and behavioural patterns.

Usability: The convenience and user experience is enhanced by providing a wide range of au-
thenticators the go from hardware based such as hardware tokens to the user or soft tokens
embedded in mobile devices. It provides online and offline authentication and high level of
interoperability, practically suitable for all devices.

Integration effort: OATH claims to address secure authentication challenges with standard and
open technology which enables solutions in all kind of devices. The framework is designed with
flexible modules aimed to be interoperable with current standards and identity management
systems.

5.2.3 Evaluation Conclusion

FIDO UAF is the most complete approach as it provides high security, usability and accept-
able levels of privacy; high assurance levels could be achieved by implementing different types
of authenticators. FIDO UAF allows smooth integration with existing IAM systems such as
OpenSSO which is considered in CREDENTIAL’s core architecture for Identity and Access
Management. FIDO UAF provides extensibility in terms of authentication methods, protocols
and authenticator types. The technology has proven high levels of maturity and wide adoption,
with open source implementations available. Contrary to FIDO UAF, FIDO U2F provides
limited possibilities for authenticators, which could be translated as usability and costs issues.
Similarly to FIDO UAF, OATH provides extensive flexibility, usability and strong security,
however, little to no privacy. Mobile connect, although promising, is limited to authenticators
that require the involvement of MNO’s as intermediaries, which turns out to be more com-

55

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

plex in terms of reachability, costs, and privacy. Similarly to FIDO UAF, SQRL seems a very
interesting approach. However, very few implementations are available and its maturity and
adoption are still in its infancy. Furthermore, the fact the users cannot have multiple accounts
in a single domain increases the privacy risks and limits the potential of CREDENTIAL when
considering multiple accounts to access the wallet.

5.3 Underlying Technologies for Authentication

Most authentication mechanisms rely on cryptography to convince a communication partner
of the user’s identity. In order to execute cryptographic algorithms securely and to provide a
protected storage location for keys on the other hand, a hardware based root of trust is necessary.
Therefore, this section investigates crypto processors, called Trusted Platform Modules (TPM).
As TPMs only provide a limited set of operations and more flexibility might be required, another
technology allowing to execute arbitrary algorithms, called Trusted Execution environment
(TEE), is analyzed.

5.3.1 Trusted Platform Module

Trusted Platform Module (TPM) [77]
Type of Technology Cryptographic Chip
Status Specification Version 2.0, Standard (ISO/IEC 11889:2015)
TRL H - TPMs have been integrated into many modern devices, such

as phones and computers.
Brief Description: A TPM is a separate hardware module in the user’s device that stores
keys and provides cryptographic operations. The operating system executes these operations,
but it cannot extract the involved private keys. An example for the use of a TPM is Android’s
Keystore and Cryptography API.
Strong authentication could be implemented by performing local authentication, for example
with a fingerprint, which unlocks access to key material. The server can then verify that
the local authentication succeeded, if the user is able to create a signature with a protected
private key.
Relevance to CREDENTIAL: A Trusted Platform Module would facilitate the imple-
mentation of authentication methods.

Evaluation

A Trusted Platform Module is a crypto processor created by the Trusted Computing Group.
The core functionality of a TPM is to provide a tamper-resistant, hardware-backed root-of-
trust. Furthermore, TPMs implement specific cryptographic primitives and algorithms next to
providing a secure storage for keys. The two main specifications for the TPM are version 1.2 and
version 2.0. A TPM complying to version 1.2 only supports SHA-1 and RSA. Although version
2.0 supports more cryptographic algorithms (including ECC, AES), the TPM is not capable of
creating the paring-keys used in proxy re-encryption. Therefore, TPMs cannot directly be used

56

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

for the key material of the algorithms used in CREDENTIAL. It may be possible to create a
key material within the TPM and use it to encrypt the private key used for proxy re-encryption.
Every time the key is used, it gets deciphered in the TPM and the plain key would reside in
memory during cryptographic operations.

TPM version 2.0 introduced different forms of the TPM, that is, among others, the discrete and
the firmware TPM as described in Appendix C.2.1. Firmware TPMs are not based on an own
crypto processor but on other technologies enabling hardware-based security. This mechanism
might be flexible enough to introduce our own cryptographic schemes, but as it is based on
Trusted Execution Environments, we refer to the subsequent Section 5.3.2.

Evaluation Conclusion

The evaluation of this technology showed that it is not possible to solely use TPMs in the
CREDENTIAL project for key management (lack of required functionality). TPMs are not
capable to perform the required operations needed by CREDENTIAL. Anyhow, the TPM could
be used to encrypt the private key for proxy re-encryption. The proxy re-encryption key could
be written in encrypted form to the disk and when the key is used it gets decrypted by the
TPM. In this way, it would also be possible to export the private key of a user to any other
device. The downside of this approach is that the (plain) private key would reside in RAM
during creation, pairing, exportation and other operations. If used, this approach should be
further evaluated (in terms of security constraints) during a later stage of the project.

5.3.2 Trusted Execution Environment

Trusted Execution Environment (TEE) [146]
Type of Technology Cryptographic Chip
Status Specification (2011), Version 1.0
TRL H - TEEs have been realized by multiple vendors, such as ARM

with its TrustZone and Intel with the Trusted Execution Technol-
ogy.

Brief Description: The TEE is a secure and isolated execution environment, which pro-
tects the integrity and confidentiality of data and code being processed inside it. The device’s
operating system can only communicate with the TEE through well-defined channels. In com-
parison to a TPM, a TEE provides more flexible functionality, since arbitrary algorithms can
be executed. A TEE can be used to implement strong authentication as described for the
TPM use case. However, the local authentication, for example the extraction and comparison
of fingerprint data, could also be implemented in this secure environment.
Relevance to CREDENTIAL: A Trusted Execution Environment would further secure
local authentication methods.

57

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Evaluation

A TEE is an execution environment running parallel to a rich operating system. Applications
executed within the trusted environment (called Trusted Applications) have a higher security
level than applications residing in the rich environment. Specified by the GlobalPlatform,
TEEs were originally created for the increasing need of security in the mobile market. Key
creation and storage within the TEE is possible although it does not provide the same security
level as for example a Secure Element. The TEE itself is a processor feature enabled in most
Android devices. To be more precise, the ARM TrustZone, one implementation of the TEE, is
used in numerous Android devices. For instance, devices running with the popular Qualcomm
SnapDragon support ARM’s TrustZone. Not all Android devices actually have implemented a
TEE or any other mean for hardware based security at all. Some older and/or cheaper devices
may only have software solutions. Nevertheless, a TEE provides great flexibility. A Trusted
Application could be used for the creation of proxy re-encryption keys, the pairing process
and would also support exportability. Currently, the creation of Trusted Applications for the
Android TEE represents a challenge for third-party developers.

Evaluation Conclusion

Within this section the Trusted Execution Environment was evaluated in respect to the require-
ments for CREDENTIAL. The evaluation led to the conclusion that a TEE would meet the
security and usability requirements of CREDENTIAL. However, writing third-party Trusted
Applications to implement our own cryptographic schemes on TEEs requires considerable ef-
fort.

5.4 Section Conclusion

This section presented the evaluation of those authentication technologies relevant to CRE-
DENTIAL’s wallet, as well as the underlying authentication technologies which could support
the execution of cryptographic operations and the secure storage of the cryptographic material.
We conclude that FIDO UAF is the most suitable approach for providing authentication to the
CREDENTIAL’s wallet, as it meets all requirements of CREDENTIAL, mainly because of the
features provided, but also because of its suitability of integration. Furthermore, as introduced
before, FIDO’s relies on the security of the device for the local management and storage of
the cryptographic material; therefore, as a second step, underlying authentication technologies
were evaluated, concluding that TPM and TEE would meet the CREDENTIAL and FIDO’s
requirements for authentication. Nevertheless, further investigation on both technologies should
be provided in order to assess the main improvements and customizations needed by the CRE-
DENTIAL architecture. Finally, the detailed description of the discussed technologies could be
found in Appendix C.

58

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

6 Identity and Access Management Protocols

Identity and access management (IAM) is a concept that combines processes, policies and
technologies for managing if, how, and when entities access resources. This area of technology
includes a variety of protocols that manage identification, authentication, and authorization
of users towards service- and identity providers. CREDENTIAL leverages IAM technologies
because it needs to authenticate users and manage how users and service providers access
shared resources. By building on established standards and technologies, CREDENTIAL avoids
reinventing the wheel and eases integration into current IAM systems.

In this section we present a variety of IAM technologies and evaluate their usefulness with
regard to CREDENTIAL. We grouped these technologies into the following categories:

• Identity protocols specify the communication of identity information between entities.

• Authorization Protocols define how a service provider gains and proves authorization.

• Policies express access rules on services, functions, and resources.

• Cryptographic APIs enable to remotely perform operations on cryptographic material.

• Other Technologies do not fall in any of the mentioned categories.

Each category follows this structure: We summarize the technologies of the category in fact
sheets. We present a list of evaluation criteria and explain why those criteria are important
for CREDENTIAL. We evaluate the technologies and conclude by explaining if and why we
recommend a technology for CREDENTIAL.

6.1 Identity Protocols

Identity protocols specify the communication of identity information between entities. They
initiate an authentication process and specify how to handle the authorization process. The
actual authentication process is usually done out of band. An identity protocol may also include
further functionality, such as the discovery of the user’s identity provider or how to handle the
user’s attributes. CREDENTIAL relies on these protocols for exchanging attributes between
users, IdPs and SPs.

This section is structured as follows: Section 6.1.1 presents the fact sheets of technologies
that can serve as identity protocols. Section 6.1.2 presents the evaluation framework, which
describes all evaluation criteria and their relevance for CREDENTIAL. Section 6.1.3 evaluates
the technologies and Section 6.1.4 discusses the results.

6.1.1 Fact Sheets

This section introduces technologies that can serve as identity protocols. A detailed description
of SAML and OpenID Connect can be found in Appendix D.1.

59

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Security Assertion Markup Language (SAML) [83]
Type of Technology Identity Protocol
Status Standard (2005), Version 2.0
TRL H - This protocol has been implemented in multiple commercial

products and open source implementation are available.
Implementation saml.xml.org/wiki/saml-open-source-implementations
IPR (License Model) http://www.oasis-open.org/committees/security/ipr.php
Brief Description: SAML is a XML-based protocol that can be used to exchange authenti-
cation, authorization and attribute data. In this protocol, an Identity Provider authenticates
the user and in case of success issues an assertion. Such assertions are used by Service
Providers as basis for authorization decisions. Since the actual authentication is out of band,
a number of methods may be applied. SAML provides confidentiality, integrity and authen-
ticity through XML Encryption and XML Signature. It also supports single sign on.
Relevance to CREDENTIAL: SAML could be used as underlying identity protocol, which
would still provide us with the freedom to implement strong authentication methods. SAML
is also a base protocol used in eIDAS [54].

OpenID [140]
Type of Technology Identity Protocol
Status Specification (2007), Version 2.0; deprecated
TRL H - This protocol has been implemented in multiple commercial

products and opens source implementations are available.
Implementation http://openid.net/developers/libraries/obsolete/
IPR (License Model) http://openid.net/intellectual-property/
Brief Description: OpenID is an identity protocol, which can be used to authenticate users
to service providers in the web environment. Since the actual authentication method is not
predefined, it is possible to integrate strong authentication. OpenID also defines a process
to discovery the user’s identity provider given her identity-string. Furthermore, there is an
attribute exchange extension, which defines how a service provider could access data about
one of its users.
Relevance to CREDENTIAL: OpenID could be used as identity protocol. However, since
it is deprecated, its successor OpenID Connect should be considered instead.

OpenID Connect [154]
Type of Technology Identity Protocol
Status Specification (2014), Version 1.0
TRL H - This protocol has been implemented in multiple commercial

products and open source implementations.
Implementation http://openid.net/developers/libraries/
IPR (License Model) http://openid.net/intellectual-property/

60

saml.xml.org/wiki/saml-open-source-implementations
http://www.oasis-open.org/committees/security/ipr.php
http://openid.net/developers/libraries/obsolete/
http://openid.net/intellectual-property/
http://openid.net/developers/libraries/
http://openid.net/intellectual-property/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: OpenID Connect is an identity layer on top of OAuth 2.0. It allows
services to verify the user’s identity, to obtain the user’s attributes and to gain delegated
access to the user’s additional server resources.
The confidentiality, integrity and authenticity of identity data and attributes is ensured by ex-
changing them as JSON Web Tokens (JWT). Those tokens support standard encryption and
signature mechanisms through the JSON Web Encryption (JWE) and JSON Web Signature
(JWS) specifications.
The OpenID Connect protocol suite also includes extensions that specify: the automatic
discovery of a user’s OpenID Provider, the dynamic registration of new service providers,
and session management.
Relevance to CREDENTIAL: OpenID Connect could be used as Identity Protocol in
CREDENTIAL. Its core specification and extensions tackle many issues CREDENTIAL faces.

WS-Federation [73]
Type of Technology SOAP extension
Status Standard (2009), Version 1.2
TRL H - This standard has been implemented in multiple commercial

products and open source implementations are available.
Implementation http://www.zxid.org/ (Apache2 license)
IPR (License Model) https://www.oasis-open.org/policies-guidelines/ipr
Brief Description: WS-Federation, which extends the functionality of WS-Trust, allows
the federation of different security realms, for example different companies. In order to do
so, WS-Federation provides mechanisms to broker identity, attribute, authentication and
authorization assertions, as well as, trust relationships between realms.
Relevance to CREDENTIAL: WS-Federation could be used to federate different security
realms.

Central Authentication Service (CAS) [121]
Type of Technology Identity Protocol
Status Specification (2015), Version 3.0.2
TRL H - Multiple implementations are used in operational environ-

ments and open source implementations are available.
Implementation https://github.com/apereo/cas
IPR (License Model) https://www.apereo.org/licensing
Brief Description: CAS defines an identity protocol that provides single sign-on in the web
environment. The CAS identity provider issues security tickets, which have to be validated
by contacting the identity provider again. The process flow of CAS is similar to OpenID
Connect and SAML. However, OpenID Connect for example provides additional features.
These features include discovery, dynamic client registration, and claims in an externally
verifiable token.

61

http://www.zxid.org/
https://www.oasis-open.org/policies-guidelines/ipr
https://github.com/apereo/cas
https://www.apereo.org/licensing

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: CAS could be used as identity protocol. However, from
an initial analysis, it provides less features than similar protocols, and those protocols should
therefore be preferred.

BrowserID / Mozilla Persona [124]
Type of Technology Identity Protocol
Status Specification (2011); deprecated
TRL H - An operational system is offered by Mozilla and open source

implementations are available.
Implementation https://github.com/mozilla/persona (MPL 2.0)
IPR (License Model) https://developer.mozilla.org/en-US/docs/MDN/About#

Copyrights_and_licenses
Brief Description: The BrowserID protocol was defined for Mozilla’s Persona service. After
successful authentication, the user generates a key pair for which an Identity Authority issues
a certificate. The key pair and certificate are stored in the browser and used to sign assertions
about the user’s identity and attributes. These assertions can be verified by a service with
the certificate.
Relevance to CREDENTIAL: BrowserID could be used as identity protocol.

WebID [156]
Type of Technology Identity Protocol
Status Specification (Draft 23, 2017)
TRL H - Multiple implementations are used in operational environ-

ments and open source implementations are available.
Implementation https://www.w3.org/wiki/WebID_Protocol_Implementations
IPR (License Model) https://www.w3.org/Consortium/Legal/2002/

ipr-notice-20021231
Brief Description: In the WebID Protocol, the user generates a key pair and issues a self-
signed certificate, which is included in requests as TLS client certificate. In addition, the
user publishes her public key and identity data on a HTTPS-secured web server. A service
that receives the user’s request, can authenticate her by comparing the certificate’s public
key with the public key served by the secure web server.
Relevance to CREDENTIAL: The WebID Protocol could be used as authentication
protocol. Since authentication within this protocol is based on the possession of key material,
strong authentication would have to be implemented at the user’s device to grant access to
this key material.

6.1.2 Evaluation Criteria

This section presents the evaluation criteria for identity protocols. Firstly, we list security
criteria:

62

https://github.com/mozilla/persona
https://developer.mozilla.org/en-US/docs/MDN/About#Copyrights_and_licenses
https://developer.mozilla.org/en-US/docs/MDN/About#Copyrights_and_licenses
https://www.w3.org/wiki/WebID_Protocol_Implementations
https://www.w3.org/Consortium/Legal/2002/ipr-notice-20021231
https://www.w3.org/Consortium/Legal/2002/ipr-notice-20021231

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Security (Security): Security considerations have to be made as sensitive identity and au-
thentication data are handled by identity protocols. The transfer of data between IdP
and SP is a major concern. This can be achieved on the transport level, for example by
using SSL/TLS, or on the content level, with encryption, digital signatures, etc. However,
there might be further implementation-specific measures, which should be described in
the protocol specification.

Authentication of service providers (Security): This criterion specifies how service pro-
viders are authenticated against the identity provider. Such an authentication is a major
mechanism to prevent phishing attacks, where a user exposes data to an adversary.

Furthermore, we also consider usability criteria:

Single sign-on (SSO) (Usability): SSO simplifies the sign-on process, as users only have
to sign-in once. The identity provider remembers that a user authenticated by binding
the authentication data to her sessions. As a result, unnecessary interaction steps can
be skipped when a service provider requires authentication for an already authenticated
user.

Single logout (SLO) (Usability): SLO allows to log the user out of the identity provider as
well as multiple services at once. This simplifies the log-out process, as the users do not
have to interact with each service provider at which they are signed in.

User consent (Usability): This criterion evaluates whether the user is asked for consent to
share an explicit set of her data with a service provider. From a privacy point of view,
informing a user about the implications of a pending data sharing operation and gaining
her consent is a very desirable property, especially when designing a user-centric system.

SP-initiated/IdP-initiated (Usability): This criterion evaluates if the authentication pro-
cess can be initiated by the service provider, the identity provider, or both.

Identity provider (IdP) discovery (Usability): This criterion evaluates if there is a way to
automate the discovery of a user’s preferred identity provider. Such a discovery mechanism
would also facilitate the dynamic association between identity and service provider.

Token size (Usability): This criterion compares the size of the exchanged authentication and
attribute data. Authentication data allows to verify the user’s authenticity, while attribute
data describes characteristics about the user. Depending on the protocol, these two types
of data might not be returned in the same response. In order to compare the sizes, we
measure the response containing the authentication data and possibly attributes, as well
as additional responses necessary to collect a total of five attributes. The token size mainly
depends on the data format and as well as the use of signatures or encryption.

Finally, the required integration effort is another important aspect:

63

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Extensibility (Integration Effort): This criterion describes how easy it is to extend the
protocol. An extension might be necessary to realize application-specific requirements.
Therefore, the protocol should define extension points that specify how enhancements
may be integrated.

Format of the identifier (Integration Effort): This criterion evaluates whether the user’s
identifier is fully specified by the protocol or if custom identifiers can be used.

Format or names of additional user attributes (Integration Effort): Apart from the
user’s identifier other user-specific attributes might be transferred. This criterion evaluates
whether the format or the names of these additional attributes are completely specified,
which facilitates interoperability. However, some use cases might require the integration
of custom attributes and formats.

Level of adoption (Integration Effort): This criterion evaluates how widely the protocol
is deployed, which might be an indicator for the protocol’s practicability.

Open source libraries (Integration Effort): This criterion evaluates if implementations are
freely available. A healthy mix of multiple implementations in diverse programming lan-
guages facilitates the adoption of a protocol, as technical requirements regarding the
operational environment can be satisfied.

Interoperability (Integration Effort): This criterion evaluates the interoperability between
actors in the protocol using different implementations. If the specification leaves of room
for interpretation, this might result in diverging implementation that have interoperability
issues. Also, if the protocol defines optional functionality or requires multiple endpoints,
the configuration of an actor should be accessible within the protocol.

Metadata (Integration Effort): This criterion evaluates whether the protocol specifies meta-
data, which describes the configuration of the service and identity provider. Such metadata
therefore allows for an automated association between service and identity provider and
facilitates interoperability.

Registration of service providers (Integration Effort): This criterion evaluates how ser-
vice providers register at the identity provider in the individual protocols. A fully speci-
fied process could facilitate the automatic association of service and identity provider and
thereby simplify their integration.

Data exchange format (Integration Effort): This criterion describes the format in which
identity and authentication data can be exchanged. The format has an influence on the
size of the transmitted data. Also, some formats may be easier to handle on certain
platforms. Additionally, the format also specifies which other data standards can be
embedded. For example, JWT can be integrated with JSON. In general, data is mainly
exchanged through HTTP parameters, JSON, and XML.

Transfer protocol (Integration Effort): This criterion describes over which protocol data
is transferred between the identity and service provider.

64

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Bindings (Integration Effort): This criterion evaluates via which methods data can be trans-
ferred between the identity and service provider. In contrast to the transfer protocols, the
bindings might further specify how such a protocol is used to exchange data. Generally,
there are two types of communication channels. Firstly, the front channel hands data be-
tween identity and service provider through the user agent. For example, the parameters
in an HTTP redirect can be used to transmit data between identity and service provider.
Also, the same can be achieved with automatically submitting forms. Additionally, data
can be passed indirectly, by providing a one-time URL for subsequent communication.
Secondly, in the back channel, identity and service provider communicate directly.

6.1.3 Evaluation

In this section, the described identity protocols are compared and evaluated according to the
selected criteria (security, usability, and implementation effort criteria). Note that some prop-
erties or features can still be fulfilled or improved if not further specified recommendations of
the specification are implemented or if the specifications are extended and amended according
to specific needs. Even though OAuth is an authorization protocol (see Section 6.2.1), it is com-
monly also used as identity protocol. Therefore, we also include OAuth in this evaluation. The
following technologies are not part of the evaluation because they are not considered relevant
for CREDENTIAL:

Mozilla Persona: Mozilla stopped developing and deploying Persona, therefore, it is depre-
cated. On November 30th, 2016, Mozilla will shut down the persona services2.

WebID: Within CREDENTIAL, we want to use identity protocols which are accepted in the
community and often utilized to ensure interoperability and extensibility. Since WebID
is not as popular and often used as other protocols, it is therefore not relevant for CRE-
DENTIAL.

Based on the security criteria, the individual protocols are evaluated and discussed.

Security: SAML 2.0 makes it possible to use XML signatures [18] as well as XML encryp-
tion [95] to protect the exchanged messages and assertions. Furthermore, the use of
security protocols such as SSL/TLS or IPSec on the transport layer is recommended. A
detailed security analysis is given by [86].
OpenID does not require the use of TLS/SSL but recommends it. Optionally, the ex-
changed messages can be signed with a shared secret that was established through a
Diffie-Hellman key exchange. Security considerations are listed by [140].
OAuth employs SSL/TLS to protect its communication and to authenticate the server.
However, no further signatures or encryption of the payload is supported by the core
specification. Proposed standards define how these additional security features can be

2https://developer.mozilla.org/en-US/Persona

65

https://developer.mozilla.org/en-US/Persona

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

achieved by transmitting SAML assertions [40] or JWT [107]. The security of OAuth is
discussed in detail by [120].
OpenID Connect protects its communication with SSL/TLS. Furthermore, JWT can be
used to encrypt and sign identity data. The core specification discusses security aspects
in detail.
In WS-Federation, the transmitted data is protected by SSL/TLS. Furthermore, XML
signatures and encryption can be applied to the individual messages. A rigorous security
proof of the WS-Federation protocol was presented by [76].
The CAS specification recommends but does not require the use of SSL/TLS. Signatures
or encryption on the token or identity data are not specified.

Authentication of service providers: SAML,OAuth, OpenID Connect, andWS-Federation
fully specify how identity providers authenticate service providers. In SAML and WS-Fe-
deration, a service provider signs its requests for user authentication, which are sent to
the identity provider. This identity provider then verifies the signature using the certifi-
cate, which was included in the service provider’s metadata. The OpenID Connect core
specification defines multiple methods to authenticate clients.
For OAuth the authentication of service providers is partially specified. One approach is
to authenticate the client based on a previously issued id and secret. However, the OAuth
specification says to conduct any authentication method that fulfills the requirements of
the authorization server.
In OpenID and CAS , the authentication of service providers is not specified. The au-
thentication of services is not foreseen in the OpenID specification, as service providers
dynamically associate with the user’s preferred identity provider. CAS recommends but
does not define the authentication of service providers.

The following evaluates and discusses the six identity protocols based on the identified usability
criteria.

Single sign-on (SSO): All six identity protocols support single sign-on. While OAuth does
not explicitly define SSO functionality, single sign-on can be achieved by using the same
authorization server for multiple clients.

Single logout (SLO): Single logout is supported by SAML, OpenID Connect, WS-Feder-
ation, and CAS . SAML supports single logout through the Single Logout Profile [93]
While single logout is not part of the core specification of OpenID Connect, the draft
for session management [48] introduces this functionality. For WS-Federation and CAS ,
single logout at the identity provider as well as at active service providers is defined in
the core specifications.
In contrast, neither OpenID nor OAuth support single logout.

User consent: In both the SAML and WS-Federation protocols, service providers register
their required attributes in a metadata document that is exchanged during the association

66

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

with an identity provider. Based on this information, the user is able to make an informed
authorization decision at the identity provider.
For OpenID, OAuth, and OpenID Connect, the service provider specifies the required
attributes in each authentication request.
In the CAS protocol, the service provider does not specify which user attributes are re-
quired. Therefore, identity provider and user have no information regarding the necessary
consent.

SP-initiated/IdP-initiated: In all six protocols, the authentication process can be initiated
by the service provider. Additionally, SAML and OpenID Connect allow the identity
provider to initiate this process. For example, in OpenID Connect, such an IdP-initiated
authentication process is realized by sending the user to a specific URL at the service
provider.

Identity provider discovery: Identity provider discovery is supported by SAML, OpenID,
and OpenID Connect. The discovery of the user’s preferred identity provider is a core
feature of OpenID. For SAML, this process is specified in the Identity Provider Discovery
Profile [93]. Also, an extension [155] makes this possible for OpenID Connect.
In contrast, OAuth, WS-Federation, and CAS do not provide support for the discovery
of identity providers. The general OAuth framework leaves discovery entirely unspecified.
Although a very early draft [109] defines this functionality, we cannot yet consider the
discover process as being supported by the OAuth ecosystem. The WS-Federation spec-
ification informally lists approaches to discover the user’s identity provider but does not
specify a process.

Token size: Due to the complex SAML specification and the use of XML, the messages and
assertions are rather large. A signed assertion containing five attributes has approximately
5.5 kByte.
Similarly, WS-Federation encodes the token in XML, which is accordingly rather large. If
a signed SAML assertion is returned as a token, the size is also approximately 5.5 kBytes.
In OpenID, the transmitted messages and assertions are small compared to complex,
XML-based approaches. A signed response containing five attributes has approximately
1 kByte.
In OAuth, access tokens are typically just a short string and can be used to verify the
user’s authenticity. Further attributes have to be loaded through an unspecified API
endpoint. This endpoint may offer data in any format, which also has an impact on the
overall size. To compare the data size to other implementations we make the reasonable
assumption that an endpoint provides the same five attributes as a signed JWT. As a
result, the combined token size is approximately 700 bytes.
OpenID Connect identity providers issue id tokens as JWT. Those tokens are smaller than
XML representations, but require more space than simple encodings of the identity data
due to the added security mechanisms. A typical response containing an access token as
well as an id token with five attributes has about 600 bytes.

67

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

In CAS , authentication data are represented by tickets, which can be validated at the
identity provider. This validation response might also contain additional attribute data
encoded as XML or JSON. Therefore, the token size is calculated using a ticket and
the validation response. A typical size for ticket and response containing five attributes
encoded as JSON is approximately 600 bytes.

In the following, the individual identity protocols are evaluated and discussed according to the
integration effort criteria.

Extensibility: SAML’s architecture, the protocol’s messages, as well as the assertion format
were designed for extensibility.
OpenID is easily extensible, as the core specification defines a mechanism for extending
the protocol. This mechanism makes it possible to add further parameters in an extension-
specific namespace to the exchanged messages.
OAuth serves as a framework, where some components are only partially defined. The
specification explicitly states that those components should be described by extensions,
and therefore offers extension mechanisms.
OpenID Connect, like OAuth, was designed with the goal of being easily extensible.
The WS-Federation specification was designed to be extensible. The XML schema makes
the extension at message-level possible.
In the design of CAS , the extensibility considerations are mainly limited to the possibility
of defining custom attributes. Compared to other standards, CAS does not provide as
many explicit extension points for the protocol itself.

Format of the identifier: SAML, OpenID, and OpenID Connect, partially define the formats
of identifiers. SAML specifies multiple formats for identifiers but also allows custom
definitions. OpenID specifies two formats for the user’s identifier, namely XRI and URL.
These identifiers serve as a basis for discovering the user’s preferred identity provider. In
OpenID Connect, the discovery extension [155] defines formats for the user’s identifiers,
as these identifiers have to be converted to a hostname used in the IdP discovery process.
In contrast, OAuth, WS-Federation, and CAS do not specify the format of identifiers.

Format or names of additional user attributes: An extension for OpenID [139] and the
core specification of OpenID Connect define a standard set of attributes as well as their
format. Custom attributes can be used in these protocols as well.
For SAML, OAuth, WS-Federation, and CAS , the format and names of additional at-
tributes are not defined.

Level of adoption: SAML, OAuth, and OpenID Connect are widely deployed. SAML is espe-
cially adopted in eBusiness, eHealth, and eGovernment [179]. [1] provides a list of services
where OAuth is deployed. Services employing OpenID Connect include Google, Amazon,
and Microsoft.

68

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

OpenID and CAS only have a medium level of adoption. While OpenID was deployed on
more than 9 million websites in 2009 according to [30], its use has significantly decreased
in favor of its successor OpenID Connect. CAS is mainly only deployed in the higher
education sector.
WS-Federation only has a low level of adoption, as this standard was not embraced by
the identity management community.

Open source libraries: For SAML [2, 96], OpenID [138], OAuth [1], andOpenID Connect [60],
multiple open source implementations are available in different programming languages.
In contrast, only a limited number of implementations is available for WS-Federation and
CAS . For example, WS-Federation has been implemented by Microsoft, Oracle, or Ping
Identity.

Interoperability: SAML, OpenID, OAuth, and OpenID Connect allow for interoperability be-
tween service and identity provider of the individual protocols. The Kantara Initiative [96]
highlighted the interoperability of SAML by testing an extensive list of implementations.
There are no official conformance tests for OpenID, however, [141] presents a matrix of
performed interoperability tests. For OpenID Connect, extensions for IdP discovery [155]
and dynamic registration of clients [153] particularly facilitate interoperability between
different actors. The OpenID foundation also certifies the interoperability of various im-
plementations [61]. WS-Federation specifies minimum requirements in order to facilitate
interoperability. Also, based on [74], interoperability tests were performed.
In contrast OAuth and CAS do not provides such a high support for interoperability.
Since OAuth is just a framework, multiple required components are only partially defined,
which severely limits interoperability. Multiple extensions [151, 109] try to close this gap,
but they were not yet finalized at the time of writing. CAS is a comparatively simple
protocol which limits the extent of interoperability issues. However, since CAS does not
support metadata, the configuration and capabilities of the actors is not documented,
which impedes interoperability. To the best of our knowledge, no interoperability tests
have been performed.

Metadata: SAML, OpenID Connect, and WS-Federation support metadata. In SAML and
WS-Federation, the configuration of service and identity provider can be specified through
XML metadata documents. These documents describe the providers’ configuration, re-
quired or offered attributes, as well as key material. For OpenID Connect, the configura-
tions of both the identity and the service provider can be described through the extensions
for IdP discovery [155] and dynamic registration of clients [153], respectively.
In contrast, OpenID, OAuth, and CAS do not use metadata. OpenID does not use meta-
data, as service providers dynamically associate with the user’s preferred identity provider,
which was discovered through the user’s identifier. The OAuth specification does not de-
fine metatdata. However, a proposed standard for client registration [151] as well as a very
early draft for authorization server discovery [109] describe how to exchange configuration
data. As these documents are not yet finalized, we cannot consider metadata as being
supported by the OAuth ecosystem. CAS does not support the description or exchange
of metadata.

69

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Registration of service providers: SAML,OpenID Connect, andWS-Federation fully spec-
ify the registration process of service providers at the identity provider. In SAML, meta-
data is used to register a service provider at an identity provider. The identity provider
verifies the structure as well as the signature of the provided metadata. Similarly, WS-
Federation exchanges metadata documents for this registration process. For OpenID
Connect, an extension makes it possible to dynamically register service providers at the
identity provider [153].
The OAuth specification describes that certain types of clients should be registered but
does not define how. A extension [151] was proposed, which specifies this process.
OpenID and CAS do not specify the registration of service providers. OpenID service
providers do not have to register at the identity provider. Instead, an association is
established dynamically when the user enters an identity pointing to the identity provider.
In the CAS specification, the registration of service providers is recommended but not
specified.

Data exchange format: All six protocols use HTTP GET or POST parameters to transfer
data. While OpenID exclusively uses those parameters, they are only used to a negligible
extend in SAML and WS-Federation to transport XML-based messages. In comparison,
OAuth and OpenID Connect employ both HTTP parameters and JSON messages. Finally,
in CAS , data can be exchanged optionally as XML or JSON through request parameters.

Transfer protocol: All six protocols exchange data via HTTP. In addition, SAML and WS-
Federation also support SOAP.

Bindings: In all six protocols, the parameters of HTTP redirects can be used to exchange
data between service and identity provider via the user agent. For OpenID and CAS ,
such redirects are the only data exchange mechanism. Besides HTTP redirects, SAML,
OAuth, and OpenID Connect [106] also support automatic form submissions for the data
transfer. The artifact binding, which allows to fetch the data from a sent one-time URL,
is supported by SAML and WS-Federation.

6.1.4 Evaluation Conclusion

The results of the evaluation are presented by Table 7.

SAML and OpenID Connect performed best in our protocol evaluation. The former, SAML was
designed for the secure exchange of authentication and authorization data given by a subject.
The latter, OpenID Connect builds on OAuth and is in particular an identity layer on top of
OAuth 2.0. It was developed to simplify the exchange of authentication data and information
about the end-users. We recommend these two protocols because both have in common, the
widespread usage especially in eBusiness, eGovernment and eHealth with good ecosystems and
implementations. Moreover, both support the usage of metadata, the option to register service
providers and offer high interoperability. SAML and OpenID Connect support the SP and IdP
initiated authentication, which gives additional flexibility. OpenID Connect is one of the recent
published protocols utilizing JSON based messages, whereas SAML uses XML-based messages.

70

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

SAML 2.0 OpenID
2.0 OAuth 2.0

OpenID
Connect

1.0

WS-Feder-
ation
1.2

CAS 3.0

Security Criteria
Security H M M H H L

Authentication of
service providers H L M H H L

Usability Criteria
Single sign-on (SSO) 3 3 3 3 3 3

Single logout (SLO) 3 3 3 3

User consent H H H H H M
Identity provider
(IdP) discovery 3 3 3

SP-initiated /
IdP-initiated SP, IdP SP SP SP, IdP SP SP

Token size > 5.5 KB > 1 KB > 700 Bytes > 600 Bytes > 5.5 KB > 600 Bytes
Integration Effort Criteria

Extensibility H H H H H M
Format of the

identifier M M L M L L

Format or names of
additional user

attributes
L M L M L L

Level of adoption H M H H L M
Open source libraries H H H H M M

Interoperability 3 3 3 3

Metadata 3 3 3

Registration of service
providers H L M H H L

Data exchange format Params,
XML Params Params,

JSON
Params,
JSON

Params,
XML

Params,
JSON, XML

Transfer protocol HTTP,
SOAP HTTP HTTP HTTP HTTP,

SOAP HTTP

Bindings
Redirect,
Form,
Artifact

Redirect Redirect,
Form

Redirect,
Form

Redirect,
Artifact Redirect

Table 7: Comparison of Identity Protocols

The bigger message size of XML-based message leads to a transmission overhead. SAML is has
powerful features but can be complex when implementing, to the contrary, OpenID Connect
offers an easy way of implementing functionality.

71

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

OAuth is widely used for authentication and inter-operates very nicely with OpenID Connect.
It was not strictly developed for identity management. Instead, it was developed with a strong
focus on authorization rather than authentication. OpenID is an earlier published protocol
which is deprecated because there are already better successors available. The WS-Federation
protocol can be used to easily extend an already existing WS-* system. The existing WS-*
system is necessary otherwise it is not possible to extend the system. WS-Federation is not as
widespread used as other protocols, because of the lower acceptance in the IdM community.
The main advantage of CAS is the simple specification and the easy usage. Besides this fact,
CAS is the weakest protocol in our evaluation, especially because security features are only
optional.

6.2 Authorization Protocols

Authorization protocols manage access control on resources between entities. They define how a
service provider would gain and prove authorization. CREDENTIAL can leverage authorization
protocols for granting and revoking access on resources like shared documents.

This section is structured as follows: Section 6.2.1 presents the fact sheets of three authorization
protocols. Section 6.2.2 presents the evaluation criteria and their relevance for CREDENTIAL.
Section 6.2.3 evaluates the protocols and Section 6.2.4 discusses the results.

6.2.1 Fact Sheets

This section introduces the protocols OAuth, UMA, and WS-Trust. The detailed description
of these protocols can be found in Appendix D.2.

OAuth [84]
Type of Technology Authorization Protocol
Status Standard (2012), Version 2.0
TRL H - This protocol has been implemented in multiple commercial

products and open source implementations are available
Implementation http://oauth.net/code/
IPR (License Model) https://www.ietf.org/ipr/
Brief Description: OAuth is an authorization protocol, where the user is able to delegate
access rights to her server resources to third parties. This delegation does not require users
to share their credentials, but relies on the issuance of access tokens. OAuth can also be used
as an identity protocol under the assumption that a user can only grant access to an API, if
the user first successfully completed an authentication process. As a consequence, the user’s
authenticity can be verified by checking the validity of an access token.
Relevance to CREDENTIAL: Only a limited set of required functionality is defined in
OAuth, but it leaves the possibility to integrate single sign on, strong authentication and
advanced cryptography. Therefore, OAuth could be used as underlying identity protocol.

72

http://oauth.net/code/
https://www.ietf.org/ipr/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

User-Managed Access (UMA) [114]
Type of Technology Authorization Protocol
Status Specification (2015), Version 1.0.1
TRL H - Multiple implementations are used in operational environ-

ments and open source implementations are available.
Implementation https://kantarainitiative.org/confluence/display/uma/

UMA+Implementations
IPR (License Model) https://kantarainitiative.org/confluence/pages/

viewpage.action?pageId=41025689
Brief Description: User-Managed Access (UMA), which is based on OAuth 2.0, allows users
to manage access to individual resources residing on any number of resource servers through
a single authorization server. UMA improves upon OAuth by introducing a protection API,
which specifies interactions between resource servers and authorization servers. This allows
to protect the APIs of multiple resource servers through a single authorization server. Fur-
thermore, UMA formalizes a requesting party that may not be the resource owner. Thereby,
this requesting party may initiate access requests, which have to satisfy a user-defined policy
to be successful. The concept of such a distinct requesting party also makes it possible to
include legal aspects into granting access to APIs.
Relevance to CREDENTIAL: In credential, UMA could be used as a powerful standard-
ized authorization framework. It allows to externalize APIs, such as attribute providers,
while still managing authorization policies at a central point. Furthermore, the concept of a
requesting party makes it easier to realize use cases, where multiple parties want to access
the user’s data, such as the eHealth pilot, where the patient as well as the physician require
access to the patient’s data.

WS-Trust [117]
Type of Technology Authorization Protocol
Status Standard (2012), Version 1.4
TRL H - This protocol has been implemented in multiple commercial

products and open source implementations are available.
Implementation https://cxf.apache.org/ (Apache2 license)
IPR (License Model) https://www.oasis-open.org/policies-guidelines/ipr
Brief Description: WS-Trust is an extension of WS-Security that specifies methods for
issuing, renewing, and validating security tokens. These tokens represent the basis for autho-
rization decisions at the services.
Relevance to CREDENTIAL: WS-Trust could be used in web service environments as
an authorization protocol.

Kerberos [126]
Type of Technology Authorization Protocol
Status Standard (2005), Version 5

73

https://kantarainitiative.org/confluence/display/uma/UMA+Implementations
https://kantarainitiative.org/confluence/display/uma/UMA+Implementations
https://kantarainitiative.org/confluence/pages/viewpage.action?pageId=41025689
https://kantarainitiative.org/confluence/pages/viewpage.action?pageId=41025689
https://cxf.apache.org/
https://www.oasis-open.org/policies-guidelines/ipr

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

TRL H - Multiple implementations are used in operational environ-
ments and and open source implementations are available.

Implementation http://web.mit.edu/kerberos/, https://www.h5l.org/,
http://www.gnu.org/software/shishi/

IPR (License Model) https://www.ietf.org/ipr/
Brief Description: The Kerberos Protocol is based on symmetric key cryptography and
therefore does not require public key infrastructure. An Authentication Server (AS) requires
proof of possession of a shared symmetric key to authenticate user. The AS then issues a
ticket, which confirms a successful authentication. With this ticket a Ticket Granting Server
performs an authorization decision and, in case of success, issues another ticket, which attests
permission to access a service.
Relevance to CREDENTIAL: The Kerberos Protocol provides basic functionality for the
authentication and authorization process. Since authentication within this protocol is based
on the possession of key material, strong authentication would have to be implemented at
the user’s device to grant access to this key material.

6.2.2 Evaluation Criteria

This section describes and motivates the evaluation criteria for the presented authorization
protocols. The individual protocols have common features which allows us to compare them
with each other. The evaluation and the resulting protocol recommendation is based on the
differences between those protocols.

Extensibility (Integration Effort): This criterion describes the potential of an authoriza-
tion protocol to be extended by further functionality. It is important that the chosen
protocol can be extended so that we are able to introduce customizations which make it
suitable for other use cases. This can significantly influence the authorization protocol
decision.

Interoperability (Integration Effort): The possibility of being interoperable with other
systems is described with this criterion. Interoperability requires a common understanding
of the protocol’s aspects by all communication partners. For instance, fully and strictly
specified interfaces can be an indicator of high interoperability because other systems can
easier communicate with this interfaces. Also, when the specification is more flexible and
allows for optional fields or extensions, a configuration documenting these customizations
can facilitate the system’s interoperability. This criterion is important because CREDEN-
TIAL’s interfaces should be used across different applications.

Adoption (Integration Effort): With the criterion adoption, the acceptance within the com-
munity and the adoption in well known systems is described. This criterion indicates if
the protocol is practical in use and easy to integrate. A high adoption implies that more
developers are improving and extending the implementations.

74

http://web.mit.edu/kerberos/
https://www.h5l.org/
http://www.gnu.org/software/shishi/
https://www.ietf.org/ipr/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Flexibility (Integration Effort): This criterion describes how flexible the protocol can be
adopted for different use cases. For example, if a protocol specification defines a system’s
architecture in high detail the possible use cases can be limited. Instead, when the speci-
fication leaves free space for customizations, then the protocol can be seen as flexible and
more use cases are covered out of the box.

Separation of Resource and Authorization Server (Usability): This criterion describes
if the protocol assumes that resource and authorization server are in the same organiza-
tional context and use out of band communication. This communication between the
entities has to be considered, as a common understanding of the to be protected resources
and authorization decisions is required. By separating the resource and authorization
server through well defined interfaces and protocols, they can be deployed on different
providers or trust domains.

External Requester (Integration Effort): This criterion indicates whether the protocol
considers the requester to be an external entity or the owner of the resource. In a data
sharing use case, such as in CREDENTIAL, data might be shared by the resource owner
with another party. Therefore, a protocol inherently supporting external requesters would
simplify the process.

Process Flow (Integration Effort): This criterion describes on a high level how the autho-
rization process is envisioned in the individual protocols. This process flow also has an
impact on the knowledge which is required to successfully authorize a user. There are two
approaches: Firstly, the client application has to invoke a token service before accessing
the resource server. This received token can then be used to access a resource. In this
flow, the client has to have the knowledge that it needs a token and how this token can be
acquired. Secondly, the client may try to access the resource server. If unauthorized, the
resource server supplies the information where and how authorization can be obtained.

6.2.3 Evaluation

This section evaluates the authorization protocols OAuth2, UMA, and WS-Trust according to
the listed criteria. In contrast to the other authorization protocols, Kerberos does not focus the
web-based environment. Therefore, Kerberos is not relevant for the CREDENTIAL project, as
its general use case differs significantly from CREDENTIAL’s requirements with respect to an
authorization protocol.

Extensibility: OAuth2 was designed high extensibility in mind, which is shown for instance in
the amount of other protocols build upon OAuth2, such as OpenID Connect and UMA.
OAuth2 is a powerful basis which leaves space for customization to use it in different use
cases.
UMA is built upon OAuth2. Basically, it is an extension of OAuth2. This protocol’s
extensibility is medium because the definition is more specific than in OAuth2.
The extensibility of WS-Trust is medium because the specification does not let as much
space for customizations as OAuth2. Since WS-Trust is an extension of WS-Security it can

75

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

only be used within WS-* systems. Nevertheless, it defines some extension mechanisms
which make it extensible.

Interoperability: UMA and WS-Trust have a similar high level of interoperability. Both have
well defined specifications so that client applications can easily communicate with the
interfaces when following the specification.
In contrast, OAuth2 is a framework rather than a strict specification, which can be utilized
in many different fields. Therefore, some aspects are left undefined which represents an
obstacle for integrating client applications. Basically, the specification leaves plenty of
room for interpretations, therefore, clients can struggle when trying to communicate with
the interfaces. In our opinion has OAuth2 a low interoperability.

Adoption: The adoption of OAuth2 is high because the protocol is used for many different web
services and as a basic framework for other protocols such as UMA and OpenID Connect.
For example, big players such as Google 3 or Dropbox 4 are using OAuth2 as protocol to
provide access to their APIs.
The adoption level of UMA is low. This is because the protocol is still a newer standard and
not as well known as the others. Even though UMA is built on OAuth2, the applications
are limited in comparison to OAuth2, since UMA focuses on a more specific use case.
WS-Trust has a medium level of adoption. It is more used within enterprises rather than
for online web services.

Flexibility: OAuth2 has a high level of flexibility, as it can be utilized for many different use
cases. The space for own customizations gives the protocol a high flexibility. For instance,
OAuth2 was developed as authorization protocol but it is often used as identity protocol
as well.
The UMA protocol specification is specific about the architecture and its process flow, lim-
iting its uses. However, it still tries to be as generic as possible. Therefore, in comparison,
this standard is rated as medium flexible.
WS-Trust has a high level of flexibility in our comparison. The WS-* specifications can
be applied to a variety of use cases.

Separation of Resource and Authorization Server: TheOAuth2 specification assumes that
both resource and authorization server are operated in the same organizational context
sharing knowledge of the issued authorization tokens. Therefore, the communication be-
tween these two entities is internally realized.
Whereas, in UMA and WS-Trust, these both entities are clearly separated. The required
communication between them as well as the processing of tokens is defined in the specifi-
cations.

External Requester: OAuth2 assumes that the entity requesting access is the resource owner.
Basically, a requester wants to access her resources when using a web service. The flexi-
bility of OAuth2 allows to also use the protocol in the way where the requester is not the

3https://developers.google.com/identity/protocols/OAuth2
4https://www.dropbox.com/developers/reference/oauth-guide

76

https://developers.google.com/identity/protocols/OAuth2
https://www.dropbox.com/developers/reference/oauth-guide

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

resource owner. However, this customization requires additional conceptual and imple-
mentation effort.
In contrast, UMA and WS-Trust are designed that external requester can request access
to a service.

Process Flow: In OAuth2, the process flow consists of two main steps. Firstly, the authoriza-
tion token has to be acquired at the authorization server. Secondly, the token is being
used at the API to get access.
UMA and WS-Trust differ from OAuth2. They consist of three basic steps. Firstly, a user
tries to access the resource server’s API, which provides information about where and how
authorization can be obtained. Next, the requester collects a token as specified. Finally,
the requester utilizes the token to get access at the resource server’s API.

6.2.4 Evaluation Conclusion

OAuth2 UMA WS-Trust
Extensibility H M M
Interoperability L H H
Adoption H L M
Flexibility H M H
Separation of Resource and
Authorization Server 7 3 3

External Requester 7* 3 3

Process Flow Auth’z → API API → Auth’z API → Auth’z

* denotes that this property can be achieved with extra implementation effort, but not
out of the box.

Table 8: Authorization Protocols Comparison

The evaluation results are summarized and discussed in this subsection. Table 8 summarizes
the results in a compact and structured way.

We recommend to use the UMA extension of OAuth to implement the data sharing aspects
of CREDENTIAL. As the UMA protocol is based on OAuth2, it can be seen as improved
specification specialized on authorizing access to whole documents. The well specified protocol
has high interoperability and medium flexibility. Furthermore, it is positive that this protocol
formalizes an external requester, which reflects CREDENTIAL’s use case.

We also recommend to use OAuth within CREDENTIAL for access control to other services
than the data sharing mechanism. In our evaluation, OAuth2 performed well because the
specification is flexible and leaves space for extensions. Hence, it can be used to cover more use
cases than UMA and WS-Trust. Nevertheless, this flexibility comes together with additional

77

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

implementation effort, because the protocol needs to be customized to the specific needs. The
high adoption was also positive for this protocol.

We do not recommend to use WS-Trust within CREDENTIAL. One disadvantage is that WS-
Trust hast to be used within a WS-* system, which takes away the freedom to combine other
technologies. Nevertheless, the protocol has good and powerful approaches but other protocols
are a better fit for CREDENTIAL’s needs.

6.3 Policies

This section describes the evaluation of the policy technologies XACML, WS-Policy and WS-
SecurityPolicy. These technologies are used to express access rules on services, functions and
resources. They are designed in a way to enable machine to machine communication and
allow the systems to automatically consider security constraints on their interactions. While
all of these technologies have the goal to express certain rules in a formal notation as a policy,
they have different application domains. XACML is specifically used as an attribute based
access control policy language. Thus, it addresses protection of resources and services against
unauthorized access. WS-Policy is the core policy framework for WS-* . It introduces basic
expressions for policy constraints on web services. WS-SecurityPolicy is an extension for WS-
Policy. It profiles specific security constraints for web services and thus enables authenticated
and confidential access to these services.

The evaluation will be performed in a way to assess the technologies individually and not
competitively because they try to solve different things. This section is structured as follows:
Section 6.3.1 presents the policy fact sheets. Section 6.3.2 defines and motivates the evaluation
criteria. Section 6.3.3 performs the evaluation and Section 6.3.4 discusses the results.

6.3.1 Fact Sheets

WS-Policy [177]
Type of Technology Policy Definition
Status Specification (Recommendation, 2007), Version 1.5
TRL H - This standard has been implemented in multiple commercial

products and open source implementations are available.
IPR (License Model) https://www.oasis-open.org/policies-guidelines/ipr
Brief Description: WS-Policy is an XML specification that allows to define policies for
entities of a web service environment. Those entities include web services, which want to
advertise their policies, as well as, web service consumers that specify their policy require-
ments. When multiple communication partners define policies, those policies can be used to
negotiate a mode of operation that fulfills the requirements of all parties. As WS-Policy can
be used to describe general purpose policies, some policies have an impact on messages ex-
changed, for example the used transport protocol, while others have no wire manifestations,
such as privacy policies.

78

https://www.oasis-open.org/policies-guidelines/ipr

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: WS-Policy could be used to specify policies that govern
the access to credential APIs, which include required permissions for requesters as well as
security methods.

WS-SecurityPolicy [116]
Type of Technology Policy Definition
Status Standard (2007), Version 1.2
TRL H - This standard has been implemented in multiple commercial

products and open source implementations are available.
IPR (License Model) https://www.oasis-open.org/policies-guidelines/ipr
Brief Description: WS-SecurityPolicy extends WS-Policy by refining the expressiveness of
policies concerning security aspects. Such a security policy includes for example requirements
regarding signatures and encryption of specific message elements, transport level security,
timestamps, or supported security tokens. Therefore, with security policies web service and
consumer are able to express their requirements, which can be further used to negotiate
mechanisms between these parties in order to satisfy the security aspects.
Relevance to CREDENTIAL: WS-SecurityPolicy could be used to specify policies that
define security methods.

eXtensible Access Control Markup Language (XACML) [134]
Type of Technology Policy Definition
Status Standard (2013), Version 3.0
TRL H - Multiple implementations are used in operational environ-

ments and open source implementations are available.
Implementation https://github.com/att/XACML (MIT license),

https://github.com/wso2/balana (Apache 2 license)
IPR (License Model) https://www.oasis-open.org/policies-guidelines/ipr
Brief Description: XACML is an xml-based standard for attribute based access control.
Authorization policies that are built into client applications are difficult to update. The
XACML model therefore encourages the separation of access decisions and the point where
those decisions are used. This decoupling leads to three main components. Firstly, a policy
information point (PIP) provides attribute data. Secondly, a policy decision point (PDP)
performs an authorization decision based on those attributes. Thirdly, a policy enforcement
point (PEP) acts based on a decision, that is, it allows or denies access to some resource. As
a result, policies can be changed on the fly and are immediately effective.
Relevance to CREDENTIAL: Credential could make use of XACML’s sophisticated ac-
cess control system to delegate authorization decisions to one central policy decision point.

79

https://www.oasis-open.org/policies-guidelines/ipr
https://github.com/att/XACML
https://github.com/wso2/balana
https://www.oasis-open.org/policies-guidelines/ipr

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

6.3.2 Evaluation Criteria

The criteria used in the policy technology evaluation are described and motivated in this sub-
section.

Extensibility (Integration Effort): This criterion describes the extensibility of each policy
technology. This may be necessary for CREDENTIAL applicability of a chosen technology
since new cryptographic algorithms are implemented and have to be reflected within the
policies.

Interoperability (Integration Effort): Policy description languages usually are not working
on their own. They are enabler for other technologies and mostly used as a configura-
tion for these tools. Therefore, this interoperability criterion describes how well a policy
technology can operate within an ecosystem of different tools and technologies that rely
on this specific policy framework. It evaluates how easily the policy technology can be
integrated in other technologies.

Adoption (Integration Effort): This criterion describes how much the policy technology is
accepted, used and relevant in various tools and products.

Open Source Libraries (Integration Effort): This criterion considers how much open source
libraries for each technology are available, how much of the functionality of the policy tech-
nology is implemented, how well accepted the open source libraries are and if they target
the Java platform.

Technology Independence (Integration Effort): This criterion describes the level of inde-
pendence the technology has against other technologies. If a policy framework is designed
in a way to work only with specific technologies, the policy framework is considered to
have a low technology independence. If the policy framework can be used in a wide variety
of technologies and does not restrict the technologies to be used with, it is considered to
have a high technology independence.

6.3.3 Evaluation

This subsection details the evaluation results according to the above defined evaluation criteria
for the policy technologies.

Extensibility: The XACML specification defines extension points for some of their XML at-
tributes. Custom functions can be added to the XACML policies through the FunctionId
attribute. Matching of attributes with certain values can be extended with the MatchId
attribute. Deriving a policy decision while having multiple policies involved are resolved
by using a RuleCombiningAlgId or PolicyCombiningAlgId. Both elements can be cus-
tomized and new combining algorithms that may be necessary for CREDENTIAL can be
included.

80

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The WS-Policy specification defines extension points within the policy expressions and
enable custom element or attribute information attached to the policies. The specification
defines a very generic handling for policy processors, how they should treat the extensions.
However, it is up to extension developer to provide a policy processor implementation
together with the extension.
The WS-SecurityPolicy specification defines guidelines for writing new security policy
similar to the predefined policies in the specification.

Interoperability: XACML is developed in a way that it can be integrated in many process
flows whenever an access control decision has to be made. It defines an own process flow
which can be executed independently from the surrounding system. The integration point
of the XACML model is the policy enforcement point where a given request is intercepted
and the policy decision is performed. The single access point and the lightweight integra-
tion (for example through an interceptor pattern) gives the XACML specification a high
interoperability evaluation.
WS-Policy is developed as the policy framework for web services. It configures the un-
derlying web service implementation according to the given policies. It is independent
from any web service implementation and thus enables communication between client
und service implementations with different technologies.
WS-SecurityPolicy uses the WS-Policy framework and provides a set of security policies
defined within WS-Policy. Therefore, they share the same interoperability level.

Adoption: There exists multiple XACML implementations ranging from open source software
to commercial products.
WS-Policy and WS-SecurityPolicy are part of multiple web service framework implemen-
tations and are widely used in any product that features SOAP and WSDL.

Open Source Libraries: A couple of open source libraries are available for XACML. Most of
them support the latest standard version 3.0 from XACML. The vast majority of these
products are implemented in Java.

Technology Independence: XACML has no requirements or implications of the surround-
ing framework or software where it will be integrated. Thus, it can be used in any
application where access control has to be enforced. On the contrary, WS-Policy and
WS-SecurityPolicy are developed for web services which express their interfaces through
WSDL.

6.3.4 Evaluation Conclusion

The evaluation results are summarized and discussed in this subsection. Table 9 summarizes
the results in a compact and structured way.

Every of the assessed policy technology has a high evaluation towards the interoperability
evaluation criteria. Except for the technology independency where the WS-Policy and WS-
SecurityPolicy technologies received a low evaluation. This is a result of the fact, that these

81

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

technologies are designed for web services using WSDL and SOAP to describe their interfaces.
Furthermore, they build the basis to configure protocols for the WS-* stack. Choosing WS-
Policy andWS-SecurityPolicy as the policy language has therefore a strong impact on remaining
technologies to use. Therefore, we do not recommend to use WS-Policy or WS-SecurityPolicy.
XACML received a high evaluation in each of the categories. We recommend it as the access
control standard for the access control management system.

XACML WS-Policy WS-SecurityPolicy
Extensibility H H H
Interoperability H H H
Adoption H H H
Open Source Libraries H H H
Technology Independence H L L

Table 9: Policy Standard Comparison

6.4 Cryptographic Protocols and APIs

Cryptographic protocols and cryptographic APIs specify how to perform cryptographic opera-
tions on key material residing in another trust domain. They enable standardized and vendor
agnostic interfaces by consolidating the requirements of different scenarios. CREDENTIAL can
leverage these specifications by mapping its needs onto established standards. In turn, we expect
to improve CREDENTIAL’s interoperability and ease its market introduction. This section is
structured as follows: Section 6.4.1 introduces three cryptographic standards. Section 6.4.2
describes the evaluation criteria and their relevance for CREDENTIAL. Section 6.4.3 evaluates
the standards and Section 6.4.4 discusses the results.

6.4.1 Fact Sheets

This section introduces the W3C Web Crypto API and KMIP. The detailed description of these
standards can be found in Appendix D.4.

Web Cryptography API [171]
Type of Technology Cryptography API
Status Specification (W3C Recommendation, 2017)
TRL H - This standardized API has been implemented in modern

browsers.
IPR (License Model) https://www.w3.org/Consortium/Legaln/2002/

ipr-notice-20021231

82

https://www.w3.org/Consortium/Legaln/2002/ipr-notice-20021231
https://www.w3.org/Consortium/Legaln/2002/ipr-notice-20021231

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: The Web Cryptography API specification defines a JavaScript API
for browsers, which provides access to cryptographic functions and key material. This API
separates the web page’s sandbox from the actual cryptography, which provides two benefits.
Firstly, as the cryptographic functions are natively implemented in the browser, they are
more efficient than JavaScript implementations. Secondly, the browser manages the keys and
is therefore able to enforce access restrictions on them. For example, access control decides
for which cryptographic functions a key may be used, and whether raw key material may be
extracted.
Relevance to CREDENTIAL: The W3C Crypto API could be used to perform crypto-
graphic operations in the browser.

Key Management Interoperability Protocol (KMIP) [137]
Type of Technology Cryptography Interoperability
Status Standard (2016), Version 1.3
TRL H - The KMIP standard has been implemented by many different

vendors.
Implementation https://wiki.oasis-open.org/kmip/

KnownKMIPImplementations
IPR (License Model) https://www.oasis-open.org/policies-guidelines/ipr
Brief Description: KMIP is a protocol for interoperable communication between key man-
agement server and cryptographic clients. This protocol enables the key management on the
server which consists of operations like create key pair, check, revoke, validate, etc. Further-
more, the protocol supports also cryptographic operations like encrypt, decrypt and more.
Basically, the protocol supports base objects and managed objects. Base objects are uses
within the protocol messages and can be parts of managed objects. Managed objects are for
example cryptographic keys, digital certificates and templates that reside on the server and
can be referenced with identifiers. Managed objects also have attributes associated, which
can be added, modified or deleted.
Relevance to CREDENTIAL: This protocol describes a standard key management pro-
tocol which is highly relevant for the CREDENTIAL project. In CREDENTIAL, the re-
encryption keys have to be generated in a user-controlled environment. KMIP, could be used
to enable interoperable communication between the CREDENTIAL cloud service and the
user’s environment. The high level of TRL together with the offered functionality show the
relevance related to CREDENTIAL.

6.4.2 Evaluation Criteria

In the evaluation we focus on different aspects of integration effort and security. Therefore, we
introduce the following evaluation criteria and motivate their relevance:

83

https://wiki.oasis-open.org/kmip/KnownKMIPImplementations
https://wiki.oasis-open.org/kmip/KnownKMIPImplementations
https://www.oasis-open.org/policies-guidelines/ipr

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Extensibility (Integration Effort): This criterion describes how difficult it is to extend the
specification and how the specification deals with extensions. An easily extendible speci-
fication eases integration because it facilitates adding custom functionality.

Interoperability (Integration Effort): This criterion analyses aspects of the specification
that influence interoperability of CREDENTIAL. Theses aspects include how detailed an
interface is described, if there is room for interpretation and how flexibility is dealt with.
Interoperability eases integration of CREDENTIAL with existing solutions, which can
save resources in the development process.

Adoption (Integration Effort): This criterion reviews the acceptance of the specification
across the community. It examines both the prevalence and usage, which gives feedback
on the practicability and maturity of the specification. These factors ease the integration
process because they decrease implementation and maintenance costs.

Component Reuse (Integration Effort): This criterion describes how many parts of the
specification can be used without extending the specification. Using many components
without adaptions decreases the need to extend the specification and thus simplifies its
integration.

Access Restriction (Security): This criterion describes if the specification is able to enforce
access restrictions on cryptographic material and services and if the specification allows
us to model trust boundaries between acting parties. Access restriction policies on cryp-
tographic material are necessary f.i. to keep the users private key safe.

Semantic Closeness (Integration Effort): This criterion describes how well CREDENTIAL’s
problem domain maps onto the problem domain of the specification. A close relation to
the original domain facilitates integration because it guarantees that present and future
design decisions of the specification address the needs of CREDENTIAL.

Freedom of Implementation (Integration Effort): This criterion describes if deployment
of the specification leaves a certain degree of freedom or if it adds unnecessary constraints.
It examines different aspects such as the runtime environment, the transport layer and the
feature set. A greater latitude of implementation eases integration because it increases
the greatest common denominator with other components.

6.4.3 Evaluation

This section evaluates two cryptographic interoperability specifications, namelyKMIP andW3C
Web Cryptography API. We consider these specifications for two reasons: Firstly, we need to
manage key material such as the users private key and re-encryption keys. Secondly, we need
to exchange keys across different trust domains and regulate the exchange with access policies.

Extensibility: KMIP is easily extensible. The specification reserves values for objects, op-
erations and attributes for extensions. Furthermore, KMIP offers profiles [136], which

84

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

consist of a subset of operations and objects. These profiles can be tailored to fit a special
scenario, such as the one of CREDENTIAL.
Web Crypto is less extensible. Although the API design is flexible and anticipates changes
in cryptography, W3C explicitly discourages vendors to implement proprietary extensions.
Vendor neutral extensions are only available via updating the W3C’s specification or
adding an extension specification. The road from filing an extension to the extension
being accepted by the W3C and implemented by browser vendors is long. Alternatively,
one could add extended functionality with a polyfill implementation.

Interoperability: KMIP focuses, as the name says, on interoperability. This becomes ap-
parent in the level of detail put into specifying operations, error handling and message
format. Moreover, KMIP offers an operation named query [137, Section 4.25 Query],
which allows a KMIP client to interrogate a KMIP server to determine its capabilities and
protocol mechanisms.
WebCrypto is less interoperable: The specification is cross-browser compliant and discour-
ages vendor specific extensions, which reduces fragmentation. However, the specification
does not require conforming agents to offer any algorithm and it’s up to developers to
check if an algorithm is supported and recommended.

Adoption: KMIP SDKs are available for several programming languages and the standard
has a long list of supporting vendors5, including but not limited to HP, Dell, IBM. At the
time of writing we could not find any studies on the market share of KMIP.
WebCrypto hits an adoption rate of 80% worldwide and 90% in Europe6. These figures
indicate an acceptable support across browser vendors on both desktop and mobile plat-
forms. Netflix leads the development of the WebCrypto standard and uses it in its media
streaming service.

Component Reuse: KMIP offers many components that can be used right away. In this
respect CREDENTIAL can benefit from KMIP.
CREDENTIAL needs its own types and schemes and WebCrypto does not offer such
components. Even a polyfill implementation for these types and schemes cannot leverage
WebCrypto because the proxy reencryption schemes and the WebCrypto schemes are not
related enough.

Access Restriction: A KMIP Server can restrict access to cryptographic material. In KMIP
the trust boundary can be simply modelled between devices. Furthermore, KMIP offers
to implement custom and fine-grained access policies.
WebCrypto also focuses on providing cryptographic services without exposing crypto-
graphic material to the client. However, access restrictions are imprecise: Its only possible
to specify key usage and extractability. Furthermore, those policies are globally defined,
so different trust domains always share the same access rights.

5https://wiki.oasis-open.org/kmip/KnownKMIPImplementations
6http://caniuse.com/#feat=cryptography

85

https://wiki.oasis-open.org/kmip/KnownKMIPImplementations
http://caniuse.com/#feat=cryptography

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Semantic Closeness: KMIP use case is semantically distant from CREDENTIAL’s use case,
because it is intended for key exchange and key management in enterprise networks. KMIP
mentions cloud related use cases [135], but those still differ in scale and semantics from
CREDENTIAL. An obstacle lies in the role reversal that KMIP entails: In KMIP, the
device that manages the keys acts as the server; In CREDENTIAL, keys are managed by
the user. Therefore, the users device needs to act as a server.
WebCrypto on the other hand is semantically close to the CREDENTIAL scenario. The
specification covers use cases [171, Section 2 Use Cases] like encrypted document sharing
and encrypted cloud storage.

Freedom of Implementation: KMIP is a communication protocol and it can be imple-
mented in any environment or language. However, KMIP requires the use of TLS and
mutual authentication [136, Section 3.1.3 Client Authenticity], which might not be how
authentication is handled in CREDENTIAL. Also, a minimal KMIP server has to offer a
variety of operations and objects [136, Section 5.1 Baseline Server] which are not directly
needed in CREDENTIAL.
WebCrypto is a Javascript API, which implies that an application that relies on this API
is likely to run in browser. The standard does not enforce restriction on the transport
layer, so this decision is up to the vendor (Chromium requires secure origins 7, Firefox
does not). As already mentioned, WebCrypto does not strictly require conforming agents
to offer any specific algorithm.

6.4.4 Evaluation Conclusion

This section summarizes the results and decides on whether or not we recommend a specification.
Table 10 gives an overview of the evaluation results.

KMIPs strengths lie in its interoperability, extensibility and the freedom to implement custom
access restrictions. The problem with KMIP is that it does not address the CREDENTIAL’s
scenario: A user’s device that runs server style applications a mutual TLS authentication are
requirements that do not fit CREDENTIAL. Because of these incompatibilities we do not rec-
ommend to use KMIP for CREDENTIAL.

Although WebCrypto fits CREDENTIAL’s problem domain well, there are too many factors
that make a stand against its integration: It’s lacking important schemes and types and it
does not offer fine-grained access policies. Furthermore, we cannot close these gaps because of
WebCrypto’s missing extensibility. Therefore, we do not recommend to integrate WebCrypto
into CREDENTIAL.

Instead, we recommend to embed the cryptographic operations into other required process
flows to satisfy CREDENTIAL’s requirements with minimal implementation and communica-
tion overhead.

7https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features

86

https://www.chromium.org/Home/chromium-security/prefer-secure-origins-for-powerful-new-features

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

KMIP WebCrypto

Extensibility H L

Interoperability H M

Adoption M H

Component Reuse M L

Access Restriction H L

Semantic Closeness L H

Freedom of Implementation

Runtime Environment 3 7

Transport Layer 7 ~

Feature Set ~ 3

Table 10: Evaluation Results of KMIP and WebCrypto

6.5 Other Technologies

This section presents and evaluates the SCIM protocol. It describes the technology in a fact
sheet, weighs the benefits and drawbacks for CREDENTIAL and concludes with a summary.

6.5.1 Fact Sheet

System for Cross-domain Identity Management (SCIM) [98]
Type of Technology User Management Protocol
Status Specification (2015), Version 2.0
TRL H - SCIM is used in operational environments, for example in

Microsoft’s Azure, and open source implementations are available.
Implementation http://www.simplecloud.info/
IPR (License Model) http://trustee.ietf.org/trust-legal-provisions.html
Brief Description: System for Cross-domain Identity Management (SCIM) specifies how
resources and in particular user’s identities can be managed in the cloud. It facilitates
interoperability, as users can be moved between different cloud services. Additionally, SCIM
allows SSO across multiple services. Also, cloud services can discover the configuration of
other services automatically, which allows them to associate without human interaction.
SCIM consists of two specifications: Firstly, it defines an extensible schema that describes
the format of resources. Secondly, SCIM specifies a HTTP-based protocol.
Relevance to CREDENTIAL: In Credential, SCIM could be used to import/export users
between Credential and an external cloud service. Furthermore, the possibility of also moving
the user’s encrypted data around the cloud has to be investigated.

Appendix D.5.1 provides a detailed description of SCIM.

87

http://www.simplecloud.info/
http://trustee.ietf.org/trust-legal-provisions.html

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

6.5.2 Evaluation

Basically, the SCIM protocol was developed for user provisioning, which is realized in the
protocol using REST and provides CRUD methods to manage digital identities. The focus is
clearly on managing identities whereas authentication and authorization is out of band.

The SCIM core schema is based on an object model which is used to describe users, data, and
other objects. It also allows custom objects which improves the extensibility of the protocol.
Such a data description facilitates interoperability and enables easy migration between different
providers. Furthermore, SCIM supports configurations which document the deployment of a
SCIM system and the applied customizations. Such configurations again improve the protocol’s
interoperability.

However, some aspects also highlight why SCIM is not perfectly suitable for CREDENTIAL.
SCIM has a low adoption, which is a disadvantage as few implementations are available and for
the migration of user data other providers would also have to support it. Furthermore, additional
functionalities are required to implement the CREDENTIAL system which are conceptually not
considered in SCIM. For example, the data storage and access mainly deals with encrypted data,
which is not foreseen in SCIM. Also, SCIM seems to be inconvenient to use, as can be see by
the way multi-valued attributes are being handled.

6.5.3 Evaluation Conclusion

Resulting on our research and evaluation, we are not recommending the usage of SCIM for
CREDENTIAL. The reason for this decision is, that beside many positive features, such as
extensibility, interoperability, and support for migration, SCIM does not consider the usage
or encrypted or signed data, and much less the employment of advanced cryptography. Using
SCIM in CREDENTIAL would cost too much effort because it has to be extended considerably.

However, SCIM introduces interesting ideas, such as a schema to describe the data which
facilitates migration to other providers. Therefore, SCIM would be a candidate for further
research, to enhance it with our advanced cryptography and integrate the protocol or core
concepts at a later project stage.

6.6 Section Conclusion

This section introduced and evaluated a variety of IAM technologies because these technolo-
gies aid to solve many of CREDENTIAL’s challenges. We recommended OpenID Connect an
SAML as identity protocols because they are widely spread and flexible. For authorization we
recommended UMA to perform access control over the flexible data sharing process in CRE-
DENTIAL as well as OAuth 2 for additional authroization needs. We recommended XACML
as policy because it can be combined with other technologies, whereas the technologies from the
WS-* stack are bound to the WS ecosystem. We did not recommend W3C Web Crypto and
SCIM because of lacking cryptographic primitives. We also did not recommend KMIP because

88

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

of its semantic distance to CREDENTIAL’s scenario. Appendix D provides further details to
the examined technologies.

89

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

7 Pilot-Specific Technologies

In this section, an overview of the pilot-specific technologies is presented. CREDENTIAL’s
three pilots are eGovernment, eHealth and eBusiness. In all three use cases data sharing and
security is of utmost importance, as users provide sensitive personal data which have to be
protected. All three use cases are introduced by a general description to provide an overview:

eGovernment: An overview of the technologies used in the eGovernment pilot will be provided.
Those technologies include Italian and general digital authentication mechanisms as well as
international identity protocols.

eHealth: In eHealth, it is especially important to adopt existing standards. Therefore, this
is a specific need of healthcare use case. Well known standardization methods like HL7, ISO
and IHE will be used to show the possibility of implementation of health care devices into the
CREDENTIAL wallet.

eBusiness: Three standard technologies are relevant for the eBusiness use case. To achieve
secure mail forwarding, especially PEC (Posta Elettronica Certificata) and S/MIME are of
interest. Also, information on the Italian identity protocol SPID is given.

7.1 Overview of eGovernment Technologies

In this paragraph, we provide an overview of relevant technologies used in the eGovernment pilot.
The technologies mainly refer to hardware and software security aspects: CNS, PKCS#11 and
IS0 7816 are focused on the physical secure token used in the pilot, while CSP and STORK/eI-
DAS adapters are about software providers and identity protocol adapters.

CNS (Carta Nazionale dei Servizi) [6]
Type of Technology Smartcard file system standard
Status Specification. Widely adopted since 2004 with about 50 million

cards currently owned by Italian citizens.
TRL H - CNS standard is well known and widely adopted in Italy. CNS

Standard has demonstrated to be still valid and no major changes
have been made from its first release to date.

IPR (License Model) The CNS file system specification is public, but its implementation
is reserved to the Italian Public Administration.

90

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: CNS is a national smartcard standard that is widely used within Italy.
CNS is a ISO 7816 smartcard with a client authentication X509 certificate on-board to allow
digital authentication over the Internet. CNS does not contain the user’s photo or other
biometric data, but stores several personal data such as name, surname, fiscal code, etc.
These data are stored in different files and format (mainly ASN.1 and tag-length-value coding)
in order to assure broad compatibility with existing software. It also contains a Netlink
structure, which is dedicated to store some medical data known when the card is issued
and that can be modify by other “authorized” healthcare professional cards (HPC). Netlink
derived keys are stored on CNS in order to allow mutual authentication with HPC. It is
possible to create and store digital signature keys, using a file system section reserved to
authorized Certification Authorities.
Relevance to CREDENTIAL: This smartcard should be used to perform secure user
authentication on the net.

CSP (Cryptographic Service Provider) [123]
Type of Technology Windows cryptographic libraries
Status Standard. Widely adopted in Italy in order to allow client au-

thentication between a user browser with CNS smartcard and a
secure online service on the Internet. This technology has been
recently enriched to create a new technology called ”smart card
mini driver”.

TRL H - CSP technology has been first developed by Microsoft in late
’90 and no major changes have been made from its first release to
date.

IPR (License Model) CSP license typically depends on vendor who implements libraries.
Brief Description: A cryptographic service provider (CSP) contains implementations of
cryptographic standards and algorithms. At a minimum, a CSP consists of a dynamic-link
library (DLL) that implements the functions in CryptoSPI (a system program interface).
Most CSPs contain the implementation of all of their own functions. Some CSPs, however,
implement their functions mainly in a Windows-based service program managed by the Win-
dows service control manager. Others implement functions in hardware, such as a smart
card or secure coprocessor. If a CSP does not implement its own functions, the DLL acts as
a pass-through layer, facilitating the communication between the operating system and the
actual CSP implementation.
The usage of CSP allows, on a Windows platform, to use Italy’s CNS smartcard in a client
(mutual) authentication with an identity provider. The user is asked to enter the smartcard’s
PIN in order to sign the challenge received by the server. The signing process is done using
the smartcard private key.
Relevance to CREDENTIAL: A CSP should be used to enable client authentication via
CNS on PCs.

PKCS #11 [132]

91

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Type of Technology API Specification for Cryptographic Tokens
Status Standard (2015), Version 2.40
TRL H - The PKCS #11 standard has been implemented by many

vendors and is in use in operational environments.
Implementation https://github.com/OpenSC/OpenSC/wiki
IPR (License Model) Open OASIS standard
Brief Description: PKCS #11 defines a standardized API to access functionality of cryp-
tographic tokens. Those cryptographic tokens are devices, such as smart cards and hardware
security modules (HSM), which hold key material and perform cryptographic operations.
Relevance to CREDENTIAL: PKCS #11 would facilitate the implementation of authen-
tication methods. For example, the authentication factor possession could be implemented
by connecting a cryptographic token and using it to generate a signature. Such a signature
could then be use demonstrate the possession of private key material to a server.

ISO 7816 [100]
Type of Technology International smartcard standard
Status Standard
TRL H - Technology widely adopted in smart card worldwide market.
IPR (License Model) ISO 7816 is an international specification; every ISO specification

is available in PDF format and can be bought on ISO or UNI web
sites.

Brief Description: ISO 7816 is a smart card international standard. It refers mainly to con-
tact smart card, and does not cover contact-less smart card. It contains 15 “chapters” which
covers a wide variety of smart card technological aspects, such as physical characteristics,
commands allowed for security operations, and so on.
Relevance to CREDENTIAL: ISO 7816 could be relevant in the project, as the Lombardy
Region smart card (CNS) is a ISO 7816 compliant card.

STORK/STORK 2.0 Framework [3]
Type of Technology Identity Protocol
Status Framework, Specification Version 2.0
TRL H - Pilots available in domains eHealth, eLearning, eBanking, and

Public Services for Businesses
IPR (License Model) STORK components can be downloaded and integrated by con-

tacting the STORK consortium.
Brief Description: The aim of the STORK and the STORK 2.0 project was the achieve-
ment of cross-border eID interoperability across Europe. The main goal of the project is to
contribute to a realization of a single European electronic identification and authentication
area, establishing interoperability of different approaches at national and EU level. In the
project, people can use their national eID to establish new e-relations with foreign electronic
services (public or private service providers). SAML is the base protocol used in STORK/S-
TORK 2.0.

92

https://github.com/OpenSC/OpenSC/wiki

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: In the CREDENTIAL project, a national STORK IdP
could be used in order to access to foreign SP. Further, an IdP could be enhanced with CRE-
DENTIAL cryptographic libraries to perform proxy re-encryption/decryption and malleable
signatures.

eIDAS Interoperability Framework [54]
Type of Technology Identity Protocol
Status Specification Version 1.0, valid since 17th September 2014, EUs

countries have to be compliant from 1st July 2016
TRL M - Open source implementations are available
Implementation https://joinup.ec.europa.eu/software/cefeid/news/

eidas-sample-implementation-v10
IPR (License Model) A sample implementation of eIDAS interoperability framework is

public and can be downloaded from a European Commission web
site.

Brief Description: The eIDAS regulation ensures that people can use their national elec-
tronic identification schemes to access public services in other EUs countries where eIDs are
available. The eIDAS regulation will also create a European internal market for electronic
signatures, electronic seals, time stamp, etc.
The eIDAS specifications are in line with Regulation No 910/2014 of the European Parliament
and of the council on electronic identification and trust services for electronic transactions
in the internal market, which regulates the acceptance of national eID across borders in the
EU.
The specifications build the technical basis for meeting the requirements of the eIDAS regu-
lation and the corresponding implementation acts.
Relevance to CREDENTIAL: The eIDAS regulation will be relevant at least for cross-
border eID authentication and electronic signatures interoperability. Technical improvements
being addressed for operational security towards eIDAS include crypto-suites for secure chan-
nels (TLS) and SAML signature/encryption, encryption of assertions to avoid attacks in the
browser, trusted distribution of gateway meta-data (signature and encryption certificates,
node addresses, and so on) by extended TSL or SAML meta-data.

7.2 Overview of eHealth Technologies

Healthcare organizations are rather productive in defining healthcare specific standards for
healthcare specific issues such as medical content structuring and encoding. Nevertheless, when
it comes to more generic functionalities such as data sharing and security, there is a strong
tendency to adopt existing standards to the specific needs of healthcare use case. This adaption
is usually referred to as “profiling” with the resulting “profiles” defining constraints on existing
standards in order to foster interoperability when using these standards in healthcare.

93

https://joinup.ec.europa.eu/software/cefeid/news/eidas-sample-implementation-v10
https://joinup.ec.europa.eu/software/cefeid/news/eidas-sample-implementation-v10

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 3: Most Prominent eHealth Standardization Bodies

Figure 3 sketches some of the most prominent standardization bodies and profiling initiatives
which are relevant for healthcare-IT:

• Especially in the domain of mobile health and medical devices healthcare-IT adapts ex-
isting ISO standards (i.e. ISO/IEEE 11073).

• HL7 is most prominent SDO that solely focusses on healthcare. HL7 standards range
from content representation formats to permission catalogues. Through a co-operation
with ANSI some HL7 standards are as well ISO norms.

• IHTSDO is a non-for-profit organization that releases the most comprehensive termi-
nology in healthcare which is an about to substitute many of the existing specialized
terminologies.

• IHE (Integrating the Healthcare Enterprise) defines profiles on existing standards which
allow implementing eHealth use cases using existing COTS. Typical origins of IHE profiles
are HL7 (e.g. document type specifications), OASIS (e.g. ebXML-based sharing of health
data) and DICOM (radiology).

• Continua is another profiling organization that defines interoperability profiles for medical
devices on top of ISO/IEEE 11073. Continua as well provides a reference architecture for
connecting personal health devices to health records by using IHE profiles.

• epSOS is an example for an initiative (European FP7 LSP project) that further profiled
existing IHE profiles. By this existing international profiles are further constrained to
common European requirements (e.g. as derived from the data protection directive) and
to cross-border sharing of health data.

In the following sections some established healthcare-IT standards and profiles are sketched
which either may be relevant for CREDENTIAL or even shall be considered for the CREDEN-
TIAL eHealth use case due to their wide acceptance with vendors and clinics.

94

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Cross-Enterprise Document Sharing (XDS) [94]
Type of Technology API and metadata specification for sharing medical documents

among healthcare professionals
Status Specification - 23.07.2010
TRL H - de facto healthcare-IT standard which is implemented by many

IT-vendors.
Brief Description: IHE XDS defines a health record infrastructure within a single domain.
It specifies transactions (protocols and interfaces) for four interoperable actors:

• Document Registry: management of document metadata and provisioning of means for
document query and registration within a domain

• Document Repository: distributed stores for medical documents

• Document Source: provisioning of medical data to be used by other care providers

• Document Consumer: client application that allows doctors to search and retrieve
medical documents that had been provided by other actors

IHE has defined several profiles for adding further functionality to XDS based infrastructures.
Among these are:

• Cross-Community Access (XCA): gateways for mediating data query and retrieval
across XDS domains

• Cross-Community Fetch (XCF): variant of XCA for implementing stateless cross-
domain-gateways (driven by epSOS use cases)

• Cross-Enterprise Document Workflow (XDW): managing workflow data within an XDS
registry/repository

• XDS-i: adaptation of XDS paradigms and services for sharing image data through
DICOM messages

• Mobile Access to Health Documents (MHD): capsule to XDS infrastructures based on
JSON and FHIR for connecting mobile devices as data sources

Relevance to CREDENTIAL: IHE XDS is the de facto healthcare-IT standard for record
based infrastructures. The CREDENTIAL eHealth pilot shall use an IHE XDS compliant
backend for managing medical data. It shall use IHE XDS transactions for making medical
data available to health professionals.

Patient Identifier Cross-Referencing (PIX) and
Patient Demographics Query (PDQ)[94]

Type of Technology Patient identity data types and API for managing patient indexes
within healthcare domains

95

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Status Specification - 23.07.2010
TRL H - de facto standard integrated and implemented by most of the

healthcare-IT vendors
Brief Description: A common problem in healthcare IT is that the same patient is reg-
istered with different identifiers within different applications. This not only holds for cross-
enterprise use cases (e.g. a hospital and a resident physician referencing the same patient
using different IDs) but even within enterprises (e.g. radiology systems introducing their own
patient IDs). IHE PIX/PDQ provides means for managing patient IDs within and across en-
terprises. Among the service provided are querying for patient IDs by demographics (PDQ)
and registration and mapping of identifiers issued by different applications (PIX).
PIX/PDQ are defined as profiles on top of three different families of standards:

• PIXv2/PDQv2: based on HL7v2 messages (EDI alike)

• PIXv3/PDQv3: based on HL7v3 messages (XML)

• PIXm/PDQm: optimized for mobile devices (JSON and FHIR)

Relevance to CREDENTIAL: IHE PIX/PDQ is the de facto standard for managing
patient identifiers in cross-enterprise use cases. It interplays well with IHE XDS and is
supported by most of the existing health record solutions (commercial and open source).
Therefore CREDENTIAL identity management components shall be able to cope with IHE
PIX/PDQ actors and transactions for the eHealth use case. In case that CREDENTIAL
eHealth use case introduces additional IDs for patients, IHE PIX shall be used to match
these with existing patient identifiers.

Audit Trail and Node Authentication (ATNA) [94]
Type of Technology Paradigms and technical means (mutual node authentication and

audit trail writing) for securing network nodes and applications
Status Specification - 23.07.2010
TRL H - IHE ATNA is the most elaborated profile on top of RFC3881
Brief Description: With its ATNA profile, IHE introduces the notion of a secure node.
A secure node only allows (mutually) authenticated actors to utilize services on that node
and ensures that an audit trail entry is written for each access to protected data that is
stored on that node. By this a foundation level of security (with respect to authenticity and
authorization of users and non-repudiation of activities) is provided to all applications which
are to be deployed on a secure node. Technically IHE ATNA specifies constraint profiles on
IETF TLS, IETF Syslog and other standards to ensure a defined level of security.
IHE ATNA only defined means for writing to an audit trail repository. The recently published
profile “Add RESTful Query to ATNA” adds a further actor and transactions for securely
reading data from an audit trail repository through a defined REST interface.

96

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: Non-Repudiation is a rather rigid requirement for most
eHealth use cases (including the ones recently discussed for CREDENTIAL). Therefore at
least the ATNA audit trail repository shall be considered as a required component for the
implementation of the CREDENTIAL eHealth use case.

Cross-Enterprise Security and Privacy Authorization (XSPA) [130]
Type of Technology Standard for cross-enterprise security and privacy profile
Status Specification - 12.06.2010
TRL L - Working Draft and no adoption from any big vendor
IPR (License Model) OASIS IPR Policy [131]
Brief Description: XSPA is a standard which describes the exchange mechanism of privacy
policies, consent directives and authorizations for electronic health record systems in an
interoperable manner. XSPA profiles have been developed for WS-Trust, XACML and SAML.
Relevance to CREDENTIAL: XSPA describes profiles used in the healthcare field, which
is covered in a pilot project of CREDENTIAL. Because the current status is still working
draft, the relevance has to be evaluated in more detail.

Cross-Enterprise User Assertion (XUA) and
Cross-Enterprise User Assertion - Attribute Extension (XUA++)[94]

Type of Technology Identity protocol
Status Specification - 15.07.2015
TRL M - Various implementation exists.
Brief Description: IHE XUA defines constraints on SAMLv2.0 for reflecting specific re-
quirements of eHealth applications. Additionally it specifies which and how certain SAML
token profiles may be used within healthcare scenarios.
In its XUA++ profile IHE defines, how typical identity attributes of healthcare professionals
(e.g. organizational affiliation, professional role) are to be mapped onto SAML attribute
statements. IHE XUA++ builds upon the OASIS XSPA standard by limiting and constrain-
ing the set of attributes and code systems to be used. In 2015 IHE Germany published a
complete mapping table for IHE XUA, OASIS XACML and IHE XDS. By this role/attribute
based access control on medical data can easily be enforced for health professionals who had
been authenticated using the IHE XUA profile.
Relevance to CREDENTIAL: For its eHealth use case CREDENTIAL shall consider the
constraints and attribute definitions from IHE XUA(++) in order to ease the enforcement
of permissions on medical resources.

Document Digital Signature (DSG)[94]
Type of Technology Document Signature
Status Specification - 12.03.2012
TRL M - Implementation for IHE DSG exists as a trial implementation

97

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Brief Description: IHE DSG defines how to apply detached and enveloping W3C XML
signatures for signing (sets of) medical documents and how XAdES extended attributes shall
be used for specific eHealth scenarios. Additionally DSG gives normative guidelines on how
signed documents are to be stored with electronic health records and how signature validation
shall be implemented.
Relevance to CREDENTIAL: As digitally signed documents are the rare exception in
regular care, CREDENTIAL will with this respect start on an almost blank sheet. Neverthe-
less the IHE DSG profile shall be considered in a respect that it reflects typical healthcare
business requirements and is designed to be easily integrated into existing care workflows.

Document Encryption (DEN)[94]
Type of Technology Document encryption
Status Specification - 19.08.2011 for Trial Implementation
TRL M - Implementation for IHE-DEN exists
Brief Description: IHE DEN defines how health data shall be encrypted for transmission
and storage. By this DEN supports the notion of end-to-end encryption where medical data
is only disclosed to the creator and consumer of medical content while all intermediary actors
may only process encrypted content.
Relevance to CREDENTIAL: IHE DEN shall be used as guidance about how data en-
cryption may be integrated with typical health data sharing scenarios. Especially definitions
about how encrypted data is to be handled in conjunction with other healthcare-IT standards
should be considered.

Advanced Patient Privacy Consent (APPC)[94]
Type of Technology Content model and encoding for patient privacy consents
Status Specification - 09.09.2016
TRL M - Trial Implementation
Brief Description: The permissions given to health professionals for accessing identifiable
patient data are controlled by the patient’s consent. A respective consent lists the organi-
zations involved in a care setting, states the purposes for which data is to be processed and
defines further constraints on data processing as agreed between the patient and her carers.
IHE APPC specifies a content model and encoding for digital consent documents which may
be imported into an access control system for setting respective permissions on the patient’s
medical data. IHE APPC is designed to be interoperable with common IAM standards such
as SAML and XACML while specifically considering existing resource management standards
such as IHE XDS.
Relevance to CREDENTIAL: Participants in the CREDENTIAL eHealth use case are
requested to give consent to the processing of their personal data. IHE APPC shall be
considered as a means for encoding and processing such consents in a manner that allows for
a seamless integration into existing healthcare-IT standards.

98

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Clinical Document Architecture (CDA)[87]
Type of Technology Document markup standard
Status Approved
TRL H - Implemented and supported by most of the big healthcare-IT

vendors.
Brief Description: With its reference information model (RIM) HL7 defines a model and
“grammar” for defining structured messages that are shared between healthcare-IT systems.
The RIM itself only defines data types and rules for combining and expanding these types.
For each type a normative XML binding is defined which allows for a direct derivation from
model to implementation. The HL7 Clinical Document Architecture defines a model for
structured documents on top of HL7 RIM data types and rules. Concrete document schemes
(e.g. a discharge letter or a lab report) can be specified by constraining and instantiating the
CDA model. By this such document schemas derive the properties of CDA: 1) Persistence,
2) Stewardship, 3) Potential for authentication, 4) Context, 5) Wholeness and 6) Human
readability. Each CDA document is made up from a header and a body which itself is split
into sections. Each section represents an area of interest (e.g. medication) and may be
further structured into coded entries which represent machine readable clinical statements
(e.g. defining the concrete doses and intake instructions for a specific medication).
By ignoring the abstract model layer and focusing on the normative CDA XML binding CDA
can as well be used as a markup language for clinical documents.
Relevance to CREDENTIAL: During the last years international SDO/SPO (e.g. HL7
and IHE), European projects (e.g. epSOS) and national initiatives (e.g. ELGA in Austria)
defined many CDA document, section and entry templates that can be re-used by CREDEN-
TIAL.

Fast Healthcare Interoperability Resources (FHIR)[88]
Type of Technology Class definitions for healthcare concepts
Status Specification - DSTU2 (final standard) will be approved in 2016
TRL H - Implemented and supported by most of the healthcare-IT ven-

dors
Brief Description: Due its properties (wholeness, stewardship, etc.) CDA is rather heavy-
weight and complex. For better reflecting recent tendencies in healthcare such as mobile
health devices, REST service interfaces and the use of web standards (e.g. JSON, OAuth)
HL7 developed the FHIR standard, which builds upon modular resource definitions (e.g.
“patient”, “care plan”, “medication”) that can be combined to implement arbitrary complex
and interoperable information objects. A strong focus of FHIR is on implementability and
reduction of complexity. Each resource definition is specified based on abstract data types
and comes with normative bindings to XML and JSON. While CDA documents are always
self-contained, FHIR follows the approach to consider a clinical information as a network of
connected resources which may be managed independently and follow their own lifecycle.

99

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: Especially when data is provided through personal health
devices, CREDENTIAL eHealth use case should consider HL7 FHIR as the preferred standard
for representing such data. The same holds for any information exchange which is rather
message than document oriented.

7.3 Overview of eBusiness Technologies

In this paragraph a brief overview of technologies used in eBusiness pilot is given. The three
technologies listed are well-known or de-facto standards in electronic mail delivery and Italian
identity provider scenarios.

PEC (Posta Elettronica Certificata) [8]
Type of Technology Email with the same legal value as registered mail (regulated by

italian laws)
Status Specification. Used in Italy since 2005.
TRL H – the technology is widely used. There are now more than 8

million PEC mailbox and more than 200 million PEC messages
every 2 months.

Implementation http://www.openpec.org/
IPR (License Model) Depends on specific implementation
Brief Description: PEC, compared to traditional e-mail, ensures: authenticity of the sender
(that is to say the mail account); integrity of sent message; no delivery refusal; matching
between the delivery receipt and the message sent by the user. Providers are required to
have a logging system, which tracks and stores all system events for 30 months, except
for the mails written by the sender. The PEC Manager’s engine implements the receipt
management, enveloped messages metadata and the messages signature.
Relevance to CREDENTIAL: CREDENTIAL features can be applied to implement
a mail forwarding for encrypted mail solution. The PEC Engine has to be able to store
re-encryption keys.

S/MIME [149]
Type of Technology Standard defined for signing and encrypting of mails.
Status Standard, version 3 proposed in 1999, actual version 3.2
TRL H – the technology is widely used in many email clients
IPR (License Model) S/MIME is currently defined in an Internet Standards Track doc-

ument (RFC 5751). Code Components extracted from the doc-
ument must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Brief Description: S/MIME is a widely accepted protocol for sending digitally signed and
encrypted messages. It is mainly used for email messages and it provides security services
such as message integrity, non repudiation of origin and data security with encryption.

100

http://www.openpec.org/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Relevance to CREDENTIAL: The technology is not relevant for identity and access
management but has to be considered when forwarding encrypted mails.

SPID [7]
Type of Technology Identity Protocol
Status Specification. SPID specifications are available from early 2015

and the first identity providers delivering SPID authentications
are online since March 2016. This protocol is currently used by
many Italian public administrations to securely authenticate users
on the Internet. Over 1 million SPID credentials have been issued
so far (update March 2017). Also some private companies are
currently working to integrate the protocol.

TRL H – the technology is used by production services
IPR (License Model) Depending on specific implementation
Brief Description: The protocol used in SPID is mainly SAML 2.0, compatible with eIDAS
specifications, with some restrictions (for example, just two types of bindings are allowed).
Relevance to CREDENTIAL: CREDENTIAL could integrate this protocol or enhance
it with advanced cryptography to selectively disclose the user identity’s data.

101

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

8 Conclusion

This deliverable assessed technologies that are relevant for the implementation of CREDEN-
TIAL’s vision: a privacy-preserving data sharing platform (wallet) with integrated identity
provider (IdP), which can be used to share authenticated data without the wallet learning any
of the user’s personal information. In this assessment, we presented an overview of relevant
technologies, grouped technologies into clusters, defined technology-specific criteria based on
high-level criteria, and evaluated the technologies according to these criteria for the application
within CREDENTIAL. Our assessment results range from recommendations if the technology
fits our use case well, to technologies with limited applicability which might require further
research, and finally to technologies that are not recommended due to better alternatives or
clashes with goals of CREDENTIAL. We summarize the assessment results for our four main
categories of technologies in the following lines and visualize them in Table 1:

Core Cryptographic Technologies are fundamental cryptographic mechanisms that allow
to securely share data from end-to-end across the cloud and ensure the data’s authenticity even
if only a subset is disclosed. For secure data sharing, we recommend to use classical proxy
re-encryption or conditional proxy re-encryption to cryptographically enforce access policies.
Proxy re-encryption with keyword search could provide search functionality, and certificate-
less or certificate based proxy re-encryption could improve scalability, but further research is
required to apply a suitable mechanism. Identity-based and attribute-based proxy re-encryption
are not recommended due to their high trust requirements. Attribute-based encryption offers
a viable alternative; our main reason for striving for proxy re-encryption is that it seems to
be more flexible from a user point of view. Finally, fully homomorphic encryption is currently
not sufficiently efficient. For the disclosure of authentic data, we recommend the usage of
redactable signatures in our cloud-based setting. While anonymous credentials offer additional
privacy benefits, their application in the cloud requires further research.

Additional Cryptographic Technologies are cryptographic means that are not at the core of
CREDENTIAL but might provide further benefits. Therefore, these technologies should be con-
sidered for further research in the course of this project. TPASS, password-based cryptography
and especially distributed password verification could improve the security of password-based
authentication, which is however not in the core interest of CREDENTIAL. Searchable encryp-
tion minimizes information leakage when performing searches on the user’s data and also proofs
of retrievability and provable data possession offer benefits by ensuring the integrity and avail-
ability of data stored at the CREDENTIAL cloud service. While private information retrieval
and oblivious RAM would represent privacy improvements, we currently do not recommend
them for the use with large datasets due to insufficient efficiency. Additionally, using unlinkable
pseudonyms could be a further privacy enhancement, secret sharing could facilitate backups
of key material, and verifiable computing techniques could ensure that data were correctly
transformed while moving through the cloud.

Authentication to the Cloud is a fundamental task within CREDENTIAL where the user
is directly involved and therefore not only privacy and security aspects but also usability is of
critical importance. As authentication technologies, we recommend FIDO UAF and U2F as well
as OATH, since these technologies are widely adopted, user-friendly, and compatible with dif-

102

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

ferent authentication methods, such as biometric authentication techniques which are especially
considered within the project. SQRL seems an interesting approach and its concept would be of
interest for further research. Mobile connect is not recommended to be used within CREDEN-
TIAL as it requires a mobile network operator as intermediary. Also, we evaluated underlying
technologies to improve the security of keys used within the authentication and data sharing
process by binding them to the hardware. We recommend to employ trusted platform modules.
As these trusted hardware modules only support a limited set of cryptographic mechanisms,
trusted execution environments should be further researched to also integrate more advanced
cryptography.

Identity and Access Management focuses on protocols to be used within CREDENTIAL to
exchange identity assertions between entities, define and demonstrate permissions, access cryp-
tography and manage the user’s data. As identity protocol, we recommend OpenID Connect and
SAML since their flexibility, extensibility and interoperability features and broad adoption fit
CREDENTIAL’s vision to implement a practical identity provider. For authorization, we recom-
mend to use OAuth and its User-Managed Access (UMA) profile to demonstrate permission to
access CREDENTIAL’s server-side functionality through a suitable and standardized protocol.
Policies can be expressed, evaluated and enforced through the powerful XACML specification
and its implementations. We also evaluated means to remotely access cryptography, but neither
the Web Cryptography API nor KMIP were closely aligned with CREDENTIAL’s vision, so
a custom integration appears more suitable. Also, SCIM introduces interesting concepts and
should be considered for further research.

103

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

List of References

[1] OAuth 2.0 Web Page. http://oauth.net/2/. Accessed: 14/07/2016.

[2] SAML Open Source Implementations. http://saml.xml.org/wiki/
saml-open-source-implementations. Accessed: 07.07.2016.

[3] STORK - Secure idenTity acrOss boRders linKed 2.0. https://www.eid-stork2.eu/,
Accessed: 13.03.2017.

[4] 11th International Conference on Availability, Reliability and Security, ARES 2016,
Salzburg, Austria, August 31 - September 2, 2016. IEEE Computer Society, 2016.

[5] Ittai Abraham, Christopher W. Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren.
Asymptotically Tight Bounds for Composing ORAM with PIR. In Serge Fehr, editor,
Public-Key Cryptography - PKC 2017 - 20th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I, volume 10174 of Lecture Notes in Computer Science, pages
91–120. Springer, 2017.

[6] AgID (Agenzia per l’Italia Digitale). Carta nazionale dei servizi (CNS).
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/
carta-nazionale-servizi, Accessed: 13.03.2017.

[7] AgID (Agenzia per l’Italia Digitale). Sistema Pubblico per la gestione dell’Identità Digitale
- SPID. http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/
spid, Accessed: 13.03.2017.

[8] AgID (Agenzia per l’Italia Digitale) and former CNIPA (Centro Nazionale per
Informatica per la Pubblica Amministrazione). Posta Elettronica Certificata
(PEC). http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/
posta-elettronica-certificata, Accessed: 13.03.2017.

[9] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and Brent
Waters. Computing on Authenticated Data. J. Cryptology, 28(2):351–395, 2015.

[10] Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless Public Key Cryptography.
In Chi-Sung Laih, editor, Advances in Cryptology - ASIACRYPT 2003, 9th International
Conference on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, November 30 - December 4, 2003, Proceedings, volume 2894 of Lecture Notes in
Computer Science, pages 452–473. Springer, 2003.

[11] Dmitri Asonov. Private information retrieval - an overview and current trends. In GI
Jahrestagung (2), pages 889–894, 2001.

[12] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-Private Proxy Re-
encryption. In Marc Fischlin, editor, Topics in Cryptology - CT-RSA 2009, The Cryptog-
raphers’ Track at the RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009.

104

http://oauth.net/2/
http://saml.xml.org/wiki/saml-open-source-implementations
http://saml.xml.org/wiki/saml-open-source-implementations
https://www.eid-stork2.eu/
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/carta-nazionale-servizi
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/carta-nazionale-servizi
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/spid
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/spid
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/posta-elettronica-certificata
http://www.agid.gov.it/agenda-digitale/infrastrutture-architetture/posta-elettronica-certificata

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Proceedings, volume 5473 of Lecture Notes in Computer Science, pages 279–294. Springer,
2009.

[13] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea
Kissner, Zachary N. J. Peterson, and Dawn Song. Remote Data Checking Using Provable
Data Possession. ACM Trans. Inf. Syst. Secur., 14(1):12:1–12:34, 2011.

[14] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn Xiaodong Song. Provable Data Possession at Un-
trusted Stores. In Ning et al. [127], pages 598–609.

[15] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn Xiaodong Song. Provable Data Possession at Untrusted
Stores. In Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 598–609,
2007.

[16] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable
Signatures. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann,
editors, Computer Security - ESORICS 2005, 10th European Symposium on Research in
Computer Security, Milan, Italy, September 12-14, 2005, Proceedings, volume 3679 of
Lecture Notes in Computer Science, pages 159–177. Springer, 2005.

[17] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf.
Syst. Secur., 9(1):1–30, 2006.

[18] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon. XML Signa-
ture Syntax and Processing (Second Edition). https://www.w3.org/TR/xmldsig-core/,
2008.

[19] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and Efficiently
Searchable Encryption. In Advances in Cryptology - CRYPTO 2007, 27th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings,
pages 535–552, 2007.

[20] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption and Asymmetric
Password-Based Cryptography. In Public-Key Cryptography - PKC 2015 - 18th IACR In-
ternational Conference on Practice and Theory in Public-Key Cryptography, Gaithersburg,
MD, USA, March 30 - April 1, 2015, Proceedings, pages 308–331, 2015.

[21] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S.
Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993.,
pages 62–73. ACM, 1993.

[22] Patrik Bichsel. Cryptographic Protocols and System Aspects for Practical Data-minimizing
Authentication. PhD thesis, K.U.Leuven, Belgium, March 2012.

105

https://www.w3.org/TR/xmldsig-core/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[23] G. R. Blakley and David Chaum, editors. Advances in Cryptology, Proceedings of
CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, vol-
ume 196 of Lecture Notes in Computer Science. Springer, 1985.

[24] George R. Blakley. Safeguarding Cryptographic Keys. Proceedings of the National Com-
puter Conference, 48:313––317, 1979.

[25] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible Protocols and Atomic Proxy
Cryptography. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98,
International Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in
Computer Science, pages 127–144. Springer, 1998.

[26] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
Preserving Symmetric Encryption. In Proceedings of the 28th Annual International Con-
ference on Advances in Cryptology: The Theory and Applications of Cryptographic Tech-
niques, EUROCRYPT ’09, pages 224–241, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public
Key Encryption with Keyword Search. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer,
2004.

[28] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A Survey of Provably
Secure Searchable Encryption. ACM Comput. Surv., 47(2):18:1–18:51, August 2014.

[29] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of Retrievability: Theory and
Implementation. In Radu Sion and Dawn Song, editors, Proceedings of the first ACM
Cloud Computing Security Workshop, CCSW 2009, Chicago, IL, USA, November 13,
2009, pages 43–54. ACM, 2009.

[30] Brian Kissel. OpenID 2009 Year in Review. http://openid.net/2009/12/16/
openid-2009-year-in-review/, 2009.

[31] Christina Brzuska, Heike Busch, Özgür Dagdelen, Marc Fischlin, Martin Franz, Stefan
Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering, and
Dominique Schröder. Redactable Signatures for Tree-Structured Data: Definitions and
Constructions. In Applied Cryptography and Network Security, 8th International Confer-
ence, ACNS 2010, Beijing, China, June 22-25, 2010. Proceedings, pages 87–104, 2010.

[32] Johannes Buchmann, Denise Demirel, David Derler, Lucas Schabhüser, and Daniel Sla-
manig. PRISMACLOUD D5.8 Overview of Verifiable Computing Techniques Providing
Private and Public Verification. 2 2016.

[33] Jan Camenisch, Robert R. Enderlein, and Gregory Neven. Two-Server Password-
Authenticated Secret Sharing UC-Secure Against Transient Corruptions. In Public-Key

106

http://openid.net/2009/12/16/openid-2009-year-in-review/
http://openid.net/2009/12/16/openid-2009-year-in-review/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Cryptography - PKC 2015 - 18th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceed-
ings, pages 283–307, 2015.

[34] Jan Camenisch and Els Van Herreweghen. Design and Implementation of the idemix
Anonymous Credential System. In Vijayalakshmi Atluri, editor, Proceedings of the 9th
ACM Conference on Computer and Communications Security, CCS 2002, Washington,
DC, USA, November 18-22, 2002, pages 21–30. ACM, 2002.

[35] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen, Gregory Neven,
and Michael Østergaard Pedersen. Formal Treatment of Privacy-Enhancing Credential
Systems. In Orr Dunkelman and Liam Keliher, editors, Selected Areas in Cryptography -
SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages 3–24.
Springer, 2015.

[36] Jan Camenisch and Anja Lehmann. (un)linkable pseudonyms for governmental databases.
In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, October 12-6, 2015, pages 1467–1479. ACM, 2015.

[37] Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven. Memento: How
to Reconstruct Your Secrets from a Single Password in a Hostile Environment. In Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, pages 256–275, 2014.

[38] Jan Camenisch, Anja Lehmann, and Gregory Neven. Optimal Distributed Password
Verification. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015, pages 182–194, 2015.

[39] Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In Moti Yung, editor, Advances in Cryptology
- CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer
Science, pages 61–76. Springer, 2002.

[40] B. Campbell, C. Mortimore, and M. Jones. Security Assertion Markup Language (SAML)
2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants. RFC 7522
(Proposed Standard), May 2015.

[41] Ran Canetti and Susan Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption.
In Ning et al. [127], pages 185–194.

[42] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu,
and Michael Steiner. Highly-Scalable Searchable Symmetric Encryption with Support for
boolean Queries. In Ran Canetti and Juan A. Garay, editors, CRYPTO (1), volume 8042
of Lecture Notes in Computer Science, pages 353–373. Springer, 2013.

107

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[43] Dario Catalano. Homomorphic Signatures and Message Authentication Codes. In Michel
Abdalla and Roberto De Prisco, editors, Security and Cryptography for Networks - 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings,
volume 8642 of Lecture Notes in Computer Science, pages 514–519. Springer, 2014.

[44] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster Fully
Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes
in Computer Science, pages 3–33, 2016.

[45] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS
’95, pages 41–, Washington, DC, USA, 1995. IEEE Computer Society.

[46] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private Information
Retrieval. J. ACM, 45(6):965–981, November 1998.

[47] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable Sym-
metric Encryption: Improved Definitions and Efficient Constructions. In Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th
ACM Conference on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, Ioctober 30 - November 3, 2006, pages 79–88. ACM, 2006.

[48] B. de Medeiros, N. Agarwal, N. Sakimura, J. Bradley, and M. Jones. OpenID Connect
Session Management 1.0 - draft 26. Technical report, OpenID Foundation, February 2016.
http://openid.net/specs/openid-connect-session-1_0.html.

[49] Denise Demirel, Stephan Krenn, Thomas Lorünser, and Giulia Traverso. Efficient and
Privacy Preserving Third Party Auditing for a Distributed Storage System. In 11th In-
ternational Conference on Availability, Reliability and Security, ARES 2016, Salzburg,
Austria, August 31 - September 2, 2016 [4], pages 88–97.

[50] David Derler, Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig. A General Framework
for Redactable Signatures and New Constructions. In Information Security and Cryptology
- ICISC 2015 - 18th International Conference, Seoul, South Korea, November 25-27, 2015,
Revised Selected Papers, pages 3–19, 2015.

[51] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryp-
tology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 617–640. Springer,
2015.

[52] ETSI. TS 102 778; Electronic Signatures and Infrastructures (ESI); PDF Advanced Elec-
tronic Signature Profiles, 2009.

108

http://openid.net/specs/openid-connect-session-1_0.html

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[53] European Commission. Technology Readiness Level Definitions. http://www.nasa.gov/
pdf/458490main_TRL_Definitions.pdf.

[54] European Commission. Regulation (EU) No 910/2014 of the European Parliament and
the Council on Electronic Identification and Trust Services for Electronic Transactions in
the Internal Market, 2014.

[55] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. Interactive Condi-
tional Proxy Re-Encryption with Fine Grain Policy. Journal of Systems and Software,
84(12):2293–2302, 2011.

[56] FIDO Alliance. FIDO UAF Architectural Overview, 2014. https://fidoalliance.org/
specs/fido-uaf-v1.0-ps-20141208/fido-uaf-overview-v1.0-ps-20141208.html#
fido-uaf-authenticator accessed April 2016.

[57] FIDO Alliance. FIDO UAF Protocol Specification v1.0, 2014. https:
//fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.
0-ps-20141208.html.

[58] FIDO Alliance. FIDO UAF Architectural Overview, 2017. https://fidoalliance.org/
specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf ac-
cessed March 2017.

[59] ForgeRock. OpenUMA, UMA protocol flow summarized diagram. https://forgerock.
org/openuma. Accessed: June 2016.

[60] OpenID Foundation. Libraries, Products, and Tools. http://openid.net/developers/
libraries/. Accessed: 08/09/2016.

[61] OpenID Foundation. OpenID Certification. http://openid.net/certification/. Ac-
cessed: 08/09/2016.

[62] Aurélien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and Gene Tsudik. Sys-
tematic Treatment of Remote Attestation. IACR Cryptology ePrint Archive, 2012:713,
2012.

[63] Aurélien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and Gene Tsudik. A Mini-
malist Approach to Remote Attestation. In Gerhard Fettweis andWolfgang Nebel, editors,
Design, Automation & Test in Europe Conference & Exhibition, DATE 2014, Dresden,
Germany, March 24-28, 2014, pages 1–6. European Design and Automation Association,
2014.

[64] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In Blakley and Chaum [23], pages 10–18.

[65] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers. In Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, pages 465–482, 2010.

109

http://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf
http://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf
https://fidoalliance.org/specs/fido-uaf-v1.0-ps- 20141208/fido-uaf-overview-v1.0-ps-20141208.html#fido-uaf-authenticator
https://fidoalliance.org/specs/fido-uaf-v1.0-ps- 20141208/fido-uaf-overview-v1.0-ps-20141208.html#fido-uaf-authenticator
https://fidoalliance.org/specs/fido-uaf-v1.0-ps- 20141208/fido-uaf-overview-v1.0-ps-20141208.html#fido-uaf-authenticator
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-uaf-protocol-v1.0-ps-20141208.html
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://forgerock.org/openuma
https://forgerock.org/openuma
http://openid.net/developers/libraries/
http://openid.net/developers/libraries/
http://openid.net/certification/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[66] Craig Gentry. Certificate-Based Encryption and the Certificate Revocation Problem. In
Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May
4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Science, pages 272–293.
Springer, 2003.

[67] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009. AAI3382729.

[68] Gibson Research Corporation. SQRL Client-Side Key Management. https://www.grc.
com/sqrl/key-flow.htm.

[69] Gibson Research Corporation. SQRL Secure Quick Reliable Login, 2014. https://www.
grc.com/sqrl/sqrl.htm.

[70] Ian Goldberg. Improving the Robustness of Private Information Retrieval. In 2007 IEEE
Symposium on Security and Privacy (S&P 2007), 20-23 May 2007, Oakland, California,
USA, pages 131–148, 2007.

[71] Ian Goldberg. Improving the Robustness of Private Information Retrieval. In 2007 IEEE
Symposium on Security and Privacy (S&P 2007), 20-23 May 2007, Oakland, California,
USA, pages 131–148. IEEE Computer Society, 2007.

[72] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious
RAMs. J. ACM, 43(3):431–473, 1996.

[73] Marc Goodner and Anthony Nadalin. Web Services Federation Language (WS-Federation)
Version 1.2. Technical report, OASIS, 2009.

[74] Marc Goodner, Sidd Shenoy, and Lloyd Burch. WSFED TC Interop Sce-
narios. https://www.oasis-open.org/committees/download.php/25931/
WSFED-TC-InteropScenarios-ED01.doc, 2007.

[75] Matthew Green and Giuseppe Ateniese. Identity-Based Proxy Re-encryption. In Jonathan
Katz and Moti Yung, editors, Applied Cryptography and Network Security, 5th Interna-
tional Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings, volume 4521
of Lecture Notes in Computer Science, pages 288–306. Springer, 2007.

[76] Thomas Groß, Birgit Pfitzmann, and Ahmad-Reza Sadeghi. Proving a WS-Federation
Passive Requestor Profile with a Browser Model. In Ernesto Damiani and Hiroshi
Maruyama, editors, Proceedings of the 2nd ACM Workshop On Secure Web Services,
SWS 2005, Fairfax, VA, USA, November 11, 2005, pages 54–64. ACM, 2005.

[77] Trusted Computing Group. Trusted Platform Module - 2.0: a brief in-
troduction. http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.
0-A-Brief-Introduction.pdf.

[78] Trusted Computing Group. Trusted Platform Module (TPM) Summary. http://www.
trustedcomputinggroup.org/trusted-platform-module-tpm-summary/.

110

https://www.grc.com/sqrl/key-flow.htm
https://www.grc.com/sqrl/key-flow.htm
https://www.grc.com/sqrl/sqrl.htm
https://www.grc.com/sqrl/sqrl.htm
https://www.oasis-open.org/committees/download.php/25931/WSFED-TC-InteropScenarios-ED01.doc
https://www.oasis-open.org/committees/download.php/25931/WSFED-TC-InteropScenarios-ED01.doc
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
http://www.trustedcomputinggroup.org/trusted-platform-module-tpm-summary/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[79] GSMA. Mobile Connect. http://www.gsma.com/personaldata/mobile-connect, Ac-
cessed: 20.03.2017.

[80] V. H. Gupta and K. Gopinath. Gits2 VSR: An Information Theoretical Secure Verifiable
Secret Redistribution Protocol for Long-term Archival Storage. In Fourth International
IEEE Security in Storage Workshop, SISW 2007, San Diego, California, USA, September
27, 2007, pages 22–33. IEEE Computer Society, 2007.

[81] Christian Hanser and Daniel Slamanig. Blank Digital Signatures. In Kefei Chen, Qi Xie,
Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, 8th ACM Symposium on In-
formation, Computer and Communications Security, ASIA CCS ’13, Hangzhou, China -
May 08 - 10, 2013, pages 95–106. ACM, 2013.

[82] Christian Hanser and Daniel Slamanig. Efficient Simultaneous Privately and Publicly
Verifiable Robust Provable Data Possession from Elliptic Curves. In Pierangela Samarati,
editor, SECRYPT 2013 - Proceedings of the 10th International Conference on Security
and Cryptography, Reykjavík, Iceland, 29-31 July, 2013, pages 15–26. SciTePress, 2013.

[83] Thomas Hardjono, Nate Klingenstein, and Scott Cantor. SAML Version 2.0 Errata 05.
Technical Report May, OASIS, 2012.

[84] D. Hardt. The OAuth 2.0 Authorization Framework. Internet Engineering Task Force
(IETF), October 2012. http://tools.ietf.org/html/rfc6749.

[85] Ian Hickson. HTML5 Web Messaging. W3C Recommendation, May 2015. https://www.
w3.org/TR/webmessaging.

[86] Frederick Hirsch, Rob Philpott, and Eve Maler. Security and Privacy Considerations for
the OASIS Security Assertion Markup Language (SAML) V2.0. Technical report, OASIS,
2005.

[87] HL7. CDA Release 2. http://www.hl7.org/implement/standards/product_brief.
cfm?product_id=7, Accessed: 20.03.2017.

[88] HL7. FHIR Documentation. https://www.hl7.org/fhir/, Accessed: 20.03.2017.

[89] HL7. Reference Information Model. http://www.hl7.org/implement/standards/rim.
cfm, Accessed: 20.03.2017.

[90] Felix Hörandner, Stephan Krenn, Andrea Migliavacca, Florian Thiemer, and Bernd Zwat-
tendorfer. CREDENTIAL: A framework for privacy-preserving cloud-based data sharing.
In 11th International Conference on Availability, Reliability and Security, ARES 2016,
Salzburg, Austria, August 31 - September 2, 2016 [4], pages 742–749.

[91] R. Housley. Cryptographic Message Syntax (CMS). STD 70, Internet Engineering Task
Force (IETF), September 2009. http://www.rfc-editor.org/rfc/rfc5652.txt.

[92] Mark P. Hoyle and Chris J. Mitchell. On Solutions to the Key Escrow Problem. In Bart
Preneel and Vincent Rijmen, editors, State of the Art in Applied Cryptography, Course

111

http://www.gsma.com/personaldata/mobile-connect
http://tools.ietf.org/html/rfc6749
https://www.w3.org/TR/webmessaging
https://www.w3.org/TR/webmessaging
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7
https://www.hl7.org/fhir/
http://www.hl7.org/implement/standards/rim.cfm
http://www.hl7.org/implement/standards/rim.cfm
http://www.rfc-editor.org/rfc/rfc5652.txt

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

on Computer Security and Industrial Cryptography, Leuven, Belgium, June 3-6, 1997.
Revised Lectures, volume 1528 of Lecture Notes in Computer Science, pages 277–306.
Springer, 1997.

[93] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch, Prateek Mishra, Rob Philpott,
and Eve Maler. Profiles for the OASIS Security Assertion Markup Language (SAML)
V2.0 - Errata Composite. Technical report, OASIS, 2009.

[94] IHE. IT Infrastructure Technical Frameworks. http://ihe.net/Technical_
Frameworks/, Accessed: 20.03.2017.

[95] Takeshi Imamura, Blair Dillaway, and Ed Simon. XML Encryption Syntax and Processing
(W3C Recommendation). https://www.w3.org/TR/xmlenc-core/, 2002.

[96] Kantara Initiative. SAML Interoperable Implementations, Tools, Libraries and Services.
http://kantarainitiative.org/programs/iop-saml/. Accessed: 07.07.2016.

[97] Initiative for Open AuTHentication. OATH - The Initiative for Open AuTHentication ,
2016. http://www.openauthentication.org/specification.

[98] Internet Engineering Task Force (IETF). Definitions, Overview, Concepts, and Require-
ments, 2015. https://tools.ietf.org/html/rfc7642 accessed in July 2016.

[99] Internet Engineering Task Force (IETF). System for Cross-Domain Identity Management:
Core Schema, 2015. https://tools.ietf.org/html/rfc7643 accessed in July 2016.

[100] ISO). 7816-1:2011 Identification cards – Integrated circuit cards. https://www.iso.org/
standard/54089.html, Accessed: 13.03.2017.

[101] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy Cryptography Revisited. In Proceedings
of the Network and Distributed System Security Symposium, NDSS 2003, San Diego,
California, USA. The Internet Society, 2003.

[102] Johannes Buchmann and Denise Demirel and Andreas Happe and Stephan Krenn and
Guilia Traverso and Thomas Lorünser. Secret Sharing Protocols for Various Adversary
Models. EU H2020 PRISMACLOUD Project Deliverable, 2016.

[103] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic
Signature Schemes. In Bart Preneel, editor, Topics in Cryptology - CT-RSA 2002, The
Cryptographer’s Track at the RSA Conference, 2002, San Jose, CA, USA, February 18-
22, 2002, Proceedings, volume 2271 of Lecture Notes in Computer Science, pages 244–262.
Springer, 2002.

[104] M. Jones. OpenID Connect Front-Channel Logout 1.0 - draft 00. OpenID Foundation,
February 2016. http://openid.net/specs/openid-connect-frontchannel-1_0.html.

[105] M. Jones and J. Bradley. OpenID Connect Back-Channel Logout 1.0 -
draft 02. OpenID Foundation, February 2016. http://openid.net/specs/
openid-connect-backchannel-1_0.html.

112

http://ihe.net/Technical_Frameworks/
http://ihe.net/Technical_Frameworks/
https://www.w3.org/TR/xmlenc-core/
http://kantarainitiative.org/programs/iop-saml/
http://www.openauthentication.org/specification
https://tools.ietf.org/html/rfc7642
https://tools.ietf.org/html/rfc7643
https://www.iso.org/standard/54089.html
https://www.iso.org/standard/54089.html
http://openid.net/specs/openid-connect-frontchannel-1_0.html
http://openid.net/specs/openid-connect-backchannel-1_0.html
http://openid.net/specs/openid-connect-backchannel-1_0.html

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[106] M. Jones and B. Campbell. OAuth 2.0 Form Post Response Mode. Tech-
nical report, OpenID Foundation, April 2015. http://openid.net/specs/
oauth-v2-form-post-response-mode-1_0.html.

[107] M. Jones, B. Campbell, and C. Mortimore. JSON Web Token (JWT) Profile for OAuth
2.0 Client Authentication and Authorization Grants. RFC 7523 (Proposed Standard),
May 2015.

[108] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage.
Internet Engineering Task Force (IETF), October 2012. http://tools.ietf.org/html/
rfc6750.

[109] M. Jones, N. Sakimura, and J. Bradley. OAuth 2.0 Authorization Server Discovery Meta-
data. (Draft 03), July 2016.

[110] P. Jones, G. Salgueiro, M. Jones, and J. Smarr. WebFinger. Internet Engineering Task
Force (IETF), September 2013. http://tools.ietf.org/html/rfc7033.

[111] Ari Juels and Burton S. Kaliski Jr. PORS: Proofs of Retrievability for Large Files. In
Ning et al. [127], pages 584–597.

[112] Kantara Initiative. The Three Phases of the UMA Profile of OAuth. https://docs.
kantarainitiative.org/uma/draft-uma-core.html#UMA-phases. Accessed: June
2016.

[113] Kantara Initiative. Webinar Slides from 16 May 2015. http://kantarainitiative.
org/confluence/download/attachments/17760302/UMA%20webinar%202015-05-16.
pdf?api=v2. Accessed: June 2016.

[114] Kantara Initiative. User-Managed Access (UMA) – Profile of OAuth 2.0, 2015. https:
//docs.kantarainitiative.org/uma/draft-uma-core.html. Accessed: June 2016.

[115] Stephan Krenn, Thomas Lorünser, and Christoph Striecks. Batch-Verifiable Secret Shar-
ing With Unconditional Privacy. In ICISSP, 2016. (in press).

[116] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Marc Goodner, Martin Gud-
gin, David Turner, Abbie Barbir, and Hans Granqvist. WS-SecurityPolicy
1.2 incorporating Approved Errata 01. Technical report, OASIS, 2012.
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/errata01/
ws-securitypolicy-1.2-errata01-complete.html.

[117] Kelvin Lawrence, Chris Kaler, Anthony Nadalin, Marc Goodner, Martin Gudgin, David
Turner, Abbie Barbir, and Hans Granqvist. WS-Trust 1.4 incorporating Approved Errata
01. Technical report, OASIS, 2012. http://docs.oasis-open.org/ws-sx/ws-trust/
v1.4/ws-trust.html.

[118] Kaitai Liang, Liming Fang, Willy Susilo, and Duncan S. Wong. A Ciphertext-Policy
Attribute-Based Proxy Re-encryption with Chosen-Ciphertext Security. In 2013 5th In-
ternational Conference on Intelligent Networking and Collaborative Systems, Xi’an city,
Shaanxi province, China, September 9-11, 2013, pages 552–559. IEEE, 2013.

113

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc7033
https://docs.kantarainitiative.org/uma/draft-uma-core.html#UMA-phases
https://docs.kantarainitiative.org/uma/draft-uma-core.html#UMA-phases
http://kantarainitiative.org/confluence/download/attachments/17760302/UMA%20webinar%2 02015-05-16.pdf?api=v2
http://kantarainitiative.org/confluence/download/attachments/17760302/UMA%20webinar%2 02015-05-16.pdf?api=v2
http://kantarainitiative.org/confluence/download/attachments/17760302/UMA%20webinar%2 02015-05-16.pdf?api=v2
https://docs.kantarainitiative.org/uma/draft-uma-core.html
https://docs.kantarainitiative.org/uma/draft-uma-core.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/errata01/ws-securitypolicy-1.2-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/errata01/ws-securitypolicy-1.2-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[119] Benoît Libert and Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy
Re-encryption. In Ronald Cramer, editor, Public Key Cryptography - PKC 2008, 11th
International Workshop on Practice and Theory in Public-Key Cryptography, Barcelona,
Spain, March 9-12, 2008. Proceedings, volume 4939 of Lecture Notes in Computer Science,
pages 360–379. Springer, 2008.

[120] T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 Threat Model and Security Con-
siderations. RFC 6819 (Informational), January 2013.

[121] Drew Mazure, Susan Bramhall, Howard Gilbert, Andy Newman, Andrew Petro, Robert
Oschwald, and Misagh Moayyed. CAS Protocol 3.0 Specification. Technical report,
APEREO, 2015.

[122] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR:
Private Information Retrieval for Everyone. PoPETs, 2016(2):155–174, 2016.

[123] Microsoft. Cryptographic Service Providers. https://msdn.microsoft.com/library/
windows/desktop/aa380245%28v=vs.85%29.aspx, Accessed: 21.03.2017.

[124] Mozilla. Persona. https://developer.mozilla.org/en-US/Persona. Accessed:
07/08/2016.

[125] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference Attacks on
Property-Preserving Encrypted Databases. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 644–655, New
York, NY, USA, 2015. ACM.

[126] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Authentication
Service (V5). RFC 4120, Internet Engineering Task Force (IETF), July 2005. http:
//www.rfc-editor.org/rfc/rfc4120.txt.

[127] Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors. Proceedings
of the 2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007. ACM, 2007.

[128] David Nuñez, Isaac Agudo, and Javier Lopez. A Parametric Family of Attack Models for
Proxy Re-encryption. In Cédric Fournet, Michael W. Hicks, and Luca Viganò, editors,
IEEE 28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17
July, 2015, pages 290–301. IEEE Computer Society, 2015.

[129] David Nuñez, Isaac Agudo, and Javier Lopez. NTRUReEncrypt: An Efficient Proxy
Re-Encryption Scheme Based on NTRU. In Feng Bao, Steven Miller, Jianying Zhou,
and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015,
pages 179–189. ACM, 2015.

[130] OASIS. Cross-Enterprise Security and Privacy Authorization (XSPA) TC. https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xspa, Accessed: 20.03.2017.

114

https://msdn.microsoft.com/library/windows/desktop/aa380245%28v=vs.85%29.aspx
https://msdn.microsoft.com/library/windows/desktop/aa380245%28v=vs.85%29.aspx
https://developer.mozilla.org/en-US/Persona
http://www.rfc-editor.org/rfc/rfc4120.txt
http://www.rfc-editor.org/rfc/rfc4120.txt
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xspa
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xspa

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[131] OASIS. Intellectual Property Rights (IPR) Policy. https://www.oasis-open.org/
policies-guidelines/ipr, Accessed: 20.03.2017.

[132] OASIS). PKCS #11 Cryptographic Token Interface Base Specification Version 2.40
Errata 01. http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/
pkcs11-base-v2.40-errata01-os.pdf, Accessed: 13.03.2017.

[133] OASIS. Security Assertion Markup Language (SAML) V2.0 Technical
Overview. https://www.oasis-open.org/committees/download.php/27819/
sstc-saml-tech-overview-2.0-cd-02.pdf accessed in March 2016.

[134] OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0 - Com-
mittee Specification 01, 2010. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-cs-01-en.pdf. Accessed: June 2016.

[135] OASIS. Key Management Interoperability Protocol Use Cases Version 1.2. OASIS Work-
ing Draft, 2013. https://www.oasis-open.org/committees/download.php/49644/
kmip-usecases-v1.2-wd10.doc accessed in July 2016.

[136] OASIS. Key Management Interoperability Protocol Profiles Version 1.3. OASIS Stan-
dard, 2016. http://docs.oasis-open.org/kmip/profiles/v1.3/kmip-profiles-v1.
3.html accessed in Feb 2017.

[137] OASIS. Key Management Interoperability Protocol Specification Version 1.2, Edited by
Kiran Thota and Kelley Burgin. OASIS Standard, 2016. http://docs.oasis-open.org/
kmip/spec/v1.3/kmip-spec-v1.3.html accessed in Feb 2017.

[138] OpenID Foundation. Libraries for Obsolete Specifications. http://openid.net/
developers/libraries/obsolete/.

[139] OpenID Foundation. OpenID Attribute Exchange 1.0 - Final. https://openid.net/
specs/openid-attribute-exchange-1_0.html, 2007.

[140] OpenID Foundation. OpenID Authentication 2.0 - Final. http://openid.net/specs/
openid-authentication-2_0.html, 2007.

[141] OSIS. http://osis.idcommons.net/wiki/I3:Cross_Solution_OpenID_Identity_
Provider_x_Relying_Party_Results, 2008.

[142] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer
Science, pages 223–238. Springer, 1999.

[143] Christian Paquin and Gregory Zaverucha. U-Prove Cryptographic Specification v1.1 (Re-
vision 2). Technical report, Microsoft Corporation, 2013.

[144] Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions.

115

https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/policies-guidelines/ipr
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-os.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/errata01/os/pkcs11-base-v2.40-errata01-os.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd- 02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd- 02.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core- spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core- spec-cs-01-en.pdf
https://www.oasis-open.org/committees/download.php/49644/kmip-usecases-v1.2-wd10.doc
https://www.oasis-open.org/committees/download.php/49644/kmip-usecases-v1.2-wd10.doc
http://docs.oasis-open.org/kmip/profiles/v1.3/kmip-profiles-v1.3.html
http://docs.oasis-open.org/kmip/profiles/v1.3/kmip-profiles-v1.3.html
http://docs.oasis-open.org/kmip/spec/v1.3/kmip-spec-v1.3.html
http://docs.oasis-open.org/kmip/spec/v1.3/kmip-spec-v1.3.html
http://openid.net/developers/libraries/obsolete/
http://openid.net/developers/libraries/obsolete/
https://openid.net/specs/openid-attribute-exchange-1_0.html
https://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://osis.idcommons.net/wiki/I3:Cross_Solution_OpenID_Identity_Provider_x_Relying_Party_Results
http://osis.idcommons.net/wiki/I3:Cross_Solution_OpenID_Identity_Provider_x_Relying_Party_Results

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[145] Giuseppe Persiano and Ivan Visconti. An Efficient and Usable Multi-show Non-
transferable Anonymous Credential System. In Ari Juels, editor, Financial Cryptography,
8th International Conference, FC 2004, Key West, FL, USA, February 9-12, 2004. Re-
vised Papers, volume 3110 of Lecture Notes in Computer Science, pages 196–211. Springer,
2004.

[146] Global Platform. The Trusted Execution Environment: Delivering Enhanced Security
at a Lower Cost to the Mobile Market, June 2015. http://www.globalplatform.org/
documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf.

[147] Henrich Christopher Pöhls, Kai Samelin, Hermann de Meer, and Joachim Posegga. Flexi-
ble Redactable Signature Schemes for Trees - Extended Security Model and Construction.
In SECRYPT 2012 - Proceedings of the International Conference on Security and Cryp-
tography, Rome, Italy, 24-27 July, 2012, SECRYPT is part of ICETE - The International
Joint Conference on e-Business and Telecommunications, pages 113–125, 2012.

[148] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
CryptDB: Protecting Confidentiality with Encrypted Query Processing. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
85–100, New York, NY, USA, 2011. ACM.

[149] B. Ramsdell and S. Turner. Secure/multipurpose internet mail extensions (s/mime) ver-
sion 3.2 message specification. RFC 5751, Internet Engineering Task Force (IETF), Jan-
uary 2010. http://www.rfc-editor.org/rfc/rfc5751.txt.

[150] Kai Rannenberg, Jan Camenisch, and Ahmad Sabouri, editors. Attribute-based Credentials
for Trust: Identity in the Information Society. Springer, 2015.

[151] J. Richer, M. Jones, J. Bradley, M. Machulak, and P. Hunt. OAuth 2.0 Dynamic Client
Registration Protocol. http://www.ietf.org/rfc/rfc7591.txt, July 2015.

[152] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On Data Banks and Privacy Homomor-
phisms. Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[153] N. Sakimura, J. Bradley, and M. Jones. OpenID Connect Dynamic Client Registration
1.0 incorporating Errata Set 1. Technical report, OpenID Foundation, November 2014.
http://openid.net/specs/openid-connect-registration-1_0.html.

[154] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID Connect
Core 1.0. Technical report, OpenID Foundation, April 2014. http://openid.net/specs/
openid-connect-core-1_0.html.

[155] N. Sakimura, J. Bradley, M. Jones, and E. Jay. OpenID Connect Discovery 1.0 in-
corporating Errata Set 1. Technical report, OpenID Foundation, November 2014.
http://openid.net/specs/openid-connect-discovery-1_0.html.

[156] Andrei Sambra, Stephane Corlosquet, Andrei Sambra, Henry Story, and Tim Berners-
Lee. Web identity and discovery (webid 1.0). W3C editor’s draft 05, W3C, 2014.
https://www.w3.org/2005/Incubator/webid/spec/identity/.

116

http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf
http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf
http://www.rfc-editor.org/rfc/rfc5751.txt
http://www.ietf.org/rfc/rfc7591.txt
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[157] Kai Samelin, Henrich Christopher Pöhls, Arne Bilzhause, Joachim Posegga, and Hermann
de Meer. On Structural Signatures for Tree Data Structures. In Applied Cryptography and
Network Security - 10th International Conference, ACNS 2012, Singapore, June 26-29,
2012. Proceedings, pages 171–187, 2012.

[158] Hovav Shacham and Brent Waters. Compact Proofs of Retrievability. In Josef Pieprzyk,
editor, Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on
the Theory and Application of Cryptology and Information Security, Melbourne, Australia,
December 7-11, 2008. Proceedings, volume 5350 of Lecture Notes in Computer Science,
pages 90–107. Springer, 2008.

[159] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[160] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In Blakley and Chaum
[23], pages 47–53.

[161] Jun Shao, Zhenfu Cao, Xiaohui Liang, and Huang Lin. Proxy Re-Encryption with Key-
word Search. Inf. Sci., 180(13):2576–2587, 2010.

[162] Emily Shen, Elaine Shi, and Brent Waters. Predicate Privacy in Encryption Systems. In
Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography,
TCC ’09, pages 457–473, Berlin, Heidelberg, 2009. Springer-Verlag.

[163] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical Techniques for
Searches on Encrypted Data. In 2000 IEEE Symposium on Security and Privacy, Berke-
ley, California, USA, May 14-17, 2000, pages 44–55. IEEE Computer Society, 2000.

[164] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious Cloud Storage.
In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 253–267. IEEE Computer Society, 2013.

[165] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content Extraction Signatures. In
Kwangjo Kim, editor, Information Security and Cryptology - ICISC 2001, 4th Interna-
tional Conference Seoul, Korea, December 6-7, 2001, Proceedings, volume 2288 of Lecture
Notes in Computer Science, pages 285–304. Springer, 2001.

[166] Chul Sur, Chae Duk Jung, Youngho Park, and Kyung Hyune Rhee. Chosen-Ciphertext
Secure Certificateless Proxy Re-Encryption. In Bart De Decker and Ingrid Schaumüller-
Bichl, editors, Communications and Multimedia Security, 11th IFIP TC 6/TC 11 In-
ternational Conference, CMS 2010, Linz, Austria, May 31 - June 2, 2010. Proceedings,
volume 6109 of Lecture Notes in Computer Science, pages 214–232. Springer, 2010.

[167] Chul Sur, Youngho Park, Sang-Uk Shin, Kyung Hyune Rhee, and Changho Seo.
Certificate-Based Proxy Re-encryption for Public Cloud Storage. In Leonard Barolli,
Ilsun You, Fatos Xhafa, Fang-Yie Leu, and Hsing-Chung Chen, editors, Seventh Interna-
tional Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,
IMIS 2013, Taichung, Taiwan, July 3-5, 2013, pages 159–166. IEEE Computer Society,
2013.

117

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[168] Qiang Tang. Type-Based Proxy Re-encryption and Its Construction. In Dipanwita Roy
Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology - IN-
DOCRYPT 2008, 9th International Conference on Cryptology in India, Kharagpur, India,
December 14-17, 2008. Proceedings, volume 5365 of Lecture Notes in Computer Science,
pages 130–144. Springer, 2008.

[169] W3C. XML Advanced Electronic Signatures (XAdES), 2003. https://www.w3.org/TR/
XAdES/, Accessed: 06.03.2017.

[170] Michael Walfish and Andrew J. Blumberg. Verifying Computations Without Reexecuting
Them. Commun. ACM, 58(2):74–84, January 2015.

[171] Mark Watson. Web Cryptography API. W3C Recommendation, January 2017. http:
//www.w3.org/TR/WebCryptoAPI/.

[172] Jian Weng, Robert H. Deng, Xuhua Ding, Cheng-Kang Chu, and Junzuo Lai. Conditional
Proxy Re-Encryption Secure Against Chosen-Ciphertext Attack. In Wanqing Li, Willy
Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini, and Vijay Varadharajan, editors,
Proceedings of the 2009 ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2009, Sydney, Australia, March 10-12, 2009, pages 322–332. ACM,
2009.

[173] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A Parallel Oblivious File
System. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012, pages 977–988. ACM, 2012.

[174] WSO2, Amila Jayaskerar Research Assistant at Indiana University Bloomington. Under-
standing XACML Policy Language (Extended Assertion Markup Language) – Part 1,
2011. http://wso2.com/library/articles/2011/10/understanding-xacml-policy-language-
xacml-extended-assertion-markup-langue-part-1/. Accessed: June 2016.

[175] Keita Xagawa and Keisuke Tanaka. Proxy re-encryption based on learning with errors.
In Proceedings of the Symposium on Cryptography and Information Security, 2010.

[176] Jia Xu and Ee-Chien Chang. Towards Efficient Proofs of Retrievability. In Heung Youl
Youm and Yoojae Won, editors, 7th ACM Symposium on Information, Compuer and
Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012, pages 79–80.
ACM, 2012.

[177] Prasad Yendluri, Ümit Yalçinalp, Frederick Hirsch, Maryann Hondo, Asir Vedamuthu,
David Orchard, and Toufic Boubez. Web services policy 1.5 - framework.
W3C recommendation, W3C, September 2007. http://www.w3.org/TR/2007/
REC-ws-policy-20070904.

[178] Jing Zhao, Dengguo Feng, and Zhenfeng Zhang. Attribute-Based Conditional Proxy Re-
Encryption with Chosen-Ciphertext Security. In Proceedings of the Global Communica-
tions Conference, 2010. GLOBECOM 2010, 6-10 December 2010, Miami, Florida, USA,
pages 1–6. IEEE, 2010.

118

https://www.w3.org/TR/XAdES/
https://www.w3.org/TR/XAdES/
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/WebCryptoAPI/
http://wso2.com/library/articles/2011/10/understanding-xacml-policy-language-xacml-extended-assertion-markup-langue-part-1/
http://wso2.com/library/articles/2011/10/understanding-xacml-policy-language-xacml-extended-assertion-markup-langue-part-1/
http://www.w3.org/TR/2007/REC-ws-policy-20070904
http://www.w3.org/TR/2007/REC-ws-policy-20070904

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

[179] Bernd Zwattendorfer, Thomas Zefferer, and Arne Tauber. The prevalence of SAML within
the european union - an empirical study. In Karl-Heinz Krempels and José Cordeiro,
editors, WEBIST 2012 - Proceedings of the 8th International Conference on Web Infor-
mation Systems and Technologies, Porto, Portugal, 18 - 21 April, 2012, pages 571–576.
SciTePress, 2012.

119

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

A Details for Core Cryptographic Technologies

In the following sections, we provide details for the cryptographic primitives evaluated and
assessed in Section 3. In particular, regarding data sharing, we describe PRE and its many
different aspects in Appendix A.1, followed by a description of FHE in Appendix A.2. For
selective disclosure of authentic data, we describe malleable signature schemes and attribute-
based credential systems in Appendix A.3 and Appendix A.4, respectively.

Besides motivation and high-level descriptions, we provide formal specifications of all interfaces
and semi-formal definitions of the security properties provided by each technology. Furthermore,
we provide references to the original literature for further reading.

A.1 Proxy Re-Encryption

Proxy re-encryption, introduced by Blaze, Bleumer, and Strauss [25], enables a proxy to trans-
form a ciphertext for one entity to a ciphertext for another entity without revealing the under-
lying message to this proxy.

A.1.1 Classical Proxy Re-Encryption

This section first describes the operations involved in a proxy re-encryption scheme. Subse-
quently, the trust relationship regarding the proxy is explained. Finally, this section provides
an example application that highlights new possibilities compared to traditional encryption
schemes.

In contrast to traditional asymmetric encryption, proxy re-encryption introduces two new oper-
ations, namely re-encryption (ReEnc) and the generation of a re-encryption key (ReKeyGen).
Figure 4 illustrates the relationships between those operations. The two standard operations for
asymmetric encryption as well as the additional operations of a proxy re-encryption scheme are
described below. An argument for the global parameters was omitted to keep the descriptions
concise. Please note that we use A and B as subscript to denote Alice and Bob, respectively.

KeyGen()→ (skA, pkA): This operation generates and returns a key pair for user Alice, contain-
ing a private key skA and a public key pkA.

ReKeyGen(skA, skB, pkB)→ (rkA→B): This operation takes the private key skA of Alice and
key material of Bob to create a re-encryption key rkA→B that can be used to transform
data encrypted for Alice to ciphertexts for Bob. Depending on the particular scheme,
Bob might only have to provide his private key skB or public key pkB. The output is the
re-encryption key rkA→B.

Enc(M,pkA)→ (CA): Given a public key pkA and a message M , this operation encrypts the
message into a ciphertext CA for the owner of the key pair to which pkA belongs. The
output is the ciphertext CA.

120

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

ReEnc(CA, rkA→B)→ (CB): The parameters of this operation are a re-encryption key rkA→B
and a ciphertext CA for Alice, where Alice also provided her private key in the re-
encryption key generation. This operation transforms the ciphertext CA into a ciphertext
CB for Bob, who presented the second key material in the re-encryption key generation.
The ciphertext CB is returned.

Dec(CA, skA)→ (M): On input of a secret key skA and a ciphertext CA, this operation decrypts
the ciphertext CA into its plain messageM if CA was encrypted for the key pair (skA, pkA).
The message M is returned.

Figure 4: Proxy Re-Encryption

Proxy re-encryption leads to a system where the proxy does not have to be fully trusted and
where the entity for which the message was originally encrypted stays in control of granting
re-encryption rights. The proxy performs the re-encryption operation without seeing the under-
lying plaintext or having direct access to secret key material. Therefore, the proxy only requires
limited trust. The entity for which the message was originally encrypted stays in control, as it
has to provide key material to generate a re-encryption key.

The applications of proxy re-encryption are manifold. To outline the capabilities introduced
by proxy re-encryption, we consider the email forwarding example [25]. In this example, Alice
wants to forward her encrypted emails to Bob for the duration of her vacation. With traditional
encryption, Alice would have to hand her private key to Bob in order for him to decrypt her
mails. However, by making use of proxy re-encryption, Alice can generate a re-encryption key
and hand this re-encryption key to the email server, which re-encrypts all of Alice’s incoming
email for Bob. As a result, Bob is able to decrypt Alice’s emails with his own private key
without requiring knowledge of Alice’s key material.

A.1.2 Conditional Proxy Re-Encryption

Conditional proxy re-encryption [172] (C-PRE) and type-based proxy re-encryption [168] (TB-
PRE) were independently introduced with the same motivation: to provide users with fine-
grained control over the delegation of decryption rights. The previously discussed variants of
proxy re-encryption enable the proxy to transform all of Alice’s ciphertexts once she provides a
re-encryption key. In contrast, C-PRE (as we will also call TB-PRE) allows the user to specify
which of her ciphertexts can be transformed by a re-encryption key. This is realized by tagging

121

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

a ciphertext with a condition during encryption and only allowing to translate this ciphertext
with a re-encryption key that satisfies the condition.

The definition of a C-PRE scheme is presented below:

KeyGen()→ (skA, pkA): This operation generates and returns a key pair for user Alice, contain-
ing a private key skA and a public key pkA.

ReKeyGen(skA, w, pkB)→ (rk
A

w−→B
): Compared to classical ReKeyGen, a condition keyword w

has to be provided, which limits the re-encryption power of the resulting re-encryption
key rk

A
w−→B

. As we are mainly interested in non-interactive schemes, we do not consider
Bob’s private key skB in the algorithm definition.

Enc(M,pkA)→ (CA): A ciphertext CA that can be re-encrypted is conditioned with keyword
w.

ReEnc(CA, rk
A

w−→B
)→ (CB): A ciphertext CA conditioned with keyword w′ can only be trans-

lated for another user to ciphertext CB, if the re-encryption key rk
A

w−→B
was created for

the same condition w = w′.

Dec(CB, skB)→ (M): On input of a secret key skA and a ciphertext CA, this operation decrypts
the ciphertext CA into its underlying plain message M if CA was encrypted for the user
who owns the key pair that includes skA. The output is the plain message M .

Subsequent research by Zhao et al. [178] and Fang et al. [55] introduced C-PRE schemes with
fine-grained access control. These schemes allow to define a policy over multiple conditions,
which has to be satisfied to re-encrypt a ciphertext. Considering the urgent mail example, Alice
could hand the mail gateway a re-encryption key, which allows to transform urgent or sales
mails that were sent during her vacation in June.

In conclusion, C-PRE extends classical PRE by providing delegators with additional control
over the delegation of decryption rights based on conditions. Classical PRE allows the proxy to
re-encrypt any of the user’s ciphertexts after a re-encryption key was issued. In contrast, with
C-PRE, a ciphertext with a condition can only be transformed if the condition is satisfied by
the re-encryption key. Also, trust assumptions and scalability of C-PRE are similar to classical
PRE, as PKI is employed to solve the key distribution problem.

A.1.3 Certificate-Less Proxy Re-Encryption

Certificate-less proxy re-encryption (CL-PRE), introduced by Sur et al. [166], applies the con-
cept of Certificate-less encryption (CLE) to PRE. Therefore, CLE and CL-PRE enjoy the same
benefits in comparison to other types of encryption or proxy re-encryption.

The scheme definition by Sur et al. [166] was adapted to achieve a consistent notation. Note
that the public parameters params generated in Setup were omitted in subsequent definitions.
The definition of a CL-PRE scheme is presented below.

122

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Setup(k)→ (msk, params): The public parameters params are established according to the
security parameter k and a master secret key msk is generated

Partial-Private-Key-Extract(msk, idA)→ (dA): The KGC generates a partial private key
dA for the user with identity idA from the master secret key msk.

Set-Secret-Value(idA)→ (xA): The user with identity idA generates a secret value xA for
herself.

KeyGen(dA, xA)→ (skA, pkA): With her partial private key dA and secret value xA the user
generates her key pair (skA, pkA).

ReKeyGen((idA, pkA, skA), (idB, pkB))→ (rkA→B): This operation takes the participants’ iden-
tities and key material to output the re-encryption key rkA→B.

Enc(M, idA, pkA)→ (CA): Given a public key pkA, an identity idA and a message M , this
operation encrypts the message into a ciphertext CA for the owner of the key pair to
which pkA belongs. The output is the ciphertext CA.

ReEnc(CA, rkA→B)→ (CB): The parameters of this operation are a re-encryption key rkA→B
and a ciphertext CA for Alice, where Alice also provided her private key in the re-
encryption key generation. This operation transforms the ciphertext CA into a ciphertext
CB for Bob, who presented the second key material in the re-encryption key generation.
The ciphertext CB is returned.

Dec(CB, skB)→ (M): On input of a secret key skA and a ciphertext CA, this operation decrypts
the ciphertext CA into its underlying plain message M if CA was encrypted for the user
who owns the key pair that includes skA. The output is the plain message M .

Certificate-less encryption (CLE), proposed by Al-Riyami and Paterson [10], neither uses certifi-
cates with all the associated public key infrastructure nor suffers from the key escrow problem.
CLE is based on IBE, however, the third party does not generate the user’s secret key on its
own. Instead, this third party, now called key generation center (KGC), issues a partial private
key (PPK) from its master key for the user’s identity. This PPK and a secret value (SV) chosen
by the user represent the actual decryption key. For encryption, the sender requires the publicly
known identity string and key material derived from the user’s SV.

The benefits of using CLE are that PKI is not required, while it does not suffer the key escrow
problem. Since CLE is based on IBE, it enjoys the same advantage of not needing certificates
to ensure the authenticity of encryption key material, as the recipient is determined through
her identity information. Therefore, without certificates, PKI is superfluous. In addition, the
distributed generation of the decryption key material solves the key escrow problem. As both,
the KGC as well as the user, contribute input for the actual decryption key material, the KGC
does not have enough information to decrypt on its own. Hence, CLE does not require as much
trust in a third party as IBE.

Support for revocation can also be achieved similar to IBE by issuing new key material for
each time period. Again, the identity information is extended with a validity time period. This

123

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

information is used by the KGC to issue new partial private keys. To revoke the association
between a user and key material from an KGC, the KGC is advised to stop issuing new partial
private keys.

In comparison to PKI with long-lived certificates, CLE schemes, like IBE schemes, offer favorable
scalability, as only one re-issuing operation of key material is required per time period instead
of one certificate status verification per encryption process.

However, CLE also suffers from the key distribution problem. Since the KGC generates the
partial private keys, it also has to securely distribute that key material.

In conclusion, certificate-less schemes are very similar to identity-based schemes, except they
have lower trust requirements. CLE schemes do not rely on PKI to ensure the correct recipient
during encryption. Additionally, revocation can be supported by periodically re-issuing key
material with a short lifespan. Therefore, CLE schemes, like IBE schemes, offer favorable
scalability in comparison to classical schemes relying on PKI. Furthermore, CLE does not
suffer from the key-escrow problem, as the key generation is distributed between KGC and
user. Hence, CLE does not require as much trust in a third party as IBE. However, the key
distribution problem still remains.

A.1.4 Certificate-Based Proxy Re-Encryption

Certificate-based proxy re-encryption (CB-PRE), proposed by Sur et al. [167], applies the con-
cept of CBE to PRE. Therefore, CBE and CB-PRE enjoy the same benefits in comparison to
other types of encryption or proxy re-encryption.

Certificate-based encryption (CBE), introduced by Gentry [66], is similar to CLE, as it combines
classical and identity-based encryption, while preserving their attractive features. In contrast
to CLE, CBE uses certificates with a simplified PKI, which does not require the inconvenient
checks for revocation status. A certification authority (CA) issues these certificates for the
public key of a user-generated key pair, thereby binding the user’s identity to the key material.
Data is encrypted with the public key for the recipient’s identity and the current time period.
Decryption requires not only the private key but also a valid certificate for the time period.

The scheme definition by Sur et al. [167] was adapted to achieve a consistent notation. Note
that the public parameters params generated in Setup were omitted in subsequent definitions.
The definition of a CB-PRE scheme is presented below:

Setup(k)→ (msk, params): The public parameters params are established according to the
security parameter k and a master secret key msk is generated.

KeyGen()→ (skA, pkA): This operation generates and returns a key pair (skA, pkA) for user
Alice, containing a private key skA and a public key pkA.

Certify(msk, τ, idA, pkA)→ (cert′A,τ): The CA uses the master secret key msk to certify that
the public key pkA belongs to a user with identity idA for a limited time period τ , resulting
in the certificate cert′A,τ .

124

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Consolidate(τ, cert′A,τ , certA,τ−1)→ (certA,τ): This function consolidates previous and the cur-
rent certificate, returning the certificate certA,τ .

ReKeyGen((certA,τ , skA), (idB, pkB))→ (rkA→B): Compared to classical ReKeyGen, the delega-
tor’s certificate certA,τ and the delegatee’s identity idB are also needed to create a re-
encryption key rkA→B.

Enc(M,pkA, τ, idA)→ (CA): In comparison to classical Enc, a sender also specifies the recipi-
ent’s identity idA and the current time period τ to encrypt a message M .

ReEnc(CA, rkA→B)→ (CB): The parameters of this operation are a re-encryption key rkA→B
and a ciphertext CA for Alice, where Alice also provided her private key in the re-
encryption key generation. This operation transforms the ciphertext CA into a ciphertext
CB for Bob, who presented the second key material in the re-encryption key generation.
The ciphertext CB is returned.

Dec(CB, skB, certB,τ)→ (M): To decrypt a ciphertext CB, not only the recipient’s secret key
skB, but also her valid certificate certB,τ is required.

By introducing identity-based concepts, CBE enables implicit certification, which requires a
recipient to be certified in order to decrypt. During encryption, the sender specifies the identity
of the receiver and uses the presumably associated public key. In order to decrypt such a
ciphertext, the receiver not only requires her private key but also a valid certificate linking
the used identity to the used public key. Consequently, the sender does not have to check the
authenticity of the used public key, as the receiver is implicitly required to be in possession of
an appropriate certificate.

For revocation, CBE only requires a simplified PKI without queries to a third party for the
revocation status. Implicit certification requires recipients to possess currently valid certificates.
As these certificates expire after a short time, the CA frequently has to re-certify the association
between the user’s identity and key material. To revoke this association, the CA is instructed
to stop re-certifying the user’s key material. However, a previously issued certificate stays valid
for the remainder of its short lifespan.

In conclusion, certificate-based schemes provide greater scalability due to a simplified PKI in
comparison to classical schemes, while requiring lower trust assumptions than identity-based
schemes. CBE supports revocation based on certificates with a short lifespan, which are re-
certified regularly, but do not have to be checked for validity. IBE and CLE follow a similar
approach, where new key material is issued periodically. Compared to classical schemes with
extensive PKI, these solutions provide greater scalability, as only one re-certify or issue operation
has to be performed per time period, instead of one status check per encryption.

A.1.5 Proxy Re-Encryption with Keyword Search

Public-key encryption with keyword search (PEKS), introduced by Boneh et al. [27], enables
users to search for a keyword in encrypted data stored by another party. To realize this,

125

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

the sender tags data with a keyword during encryption, before handing the ciphertext to the
recipient’s storage provider. In order to search, the recipient generates a trapdoor for a keyword,
hands this trapdoor to her storage provider, which then tests for matching ciphertexts.

Proxy re-encryption with keyword search (PRES), presented by Shao et al. [161], allows to
delegate both decryption and search rights to another party. As in PEKS, data is encrypted
for a recipient, Alice, and tagged with a keyword. In addition, a proxy can re-encrypt Alice’s
ciphertext for another user, called Bob. Then, Bob is able to generate trapdoors that can be
used to search on the re-encrypted data as well as to decrypt these ciphertexts. The PRES
definition of Shao et al. was adapted to achieve a consistent notation. Note that the public
parameters params generated in Setup were omitted in subsequent definitions. The definition
of a PRES scheme is presented below:

KeyGen()→ (skA, pkA): This operation generates and returns a key pair (skA, pkA) for user
Alice, containing a private key skA and a public key pkA.

ReKeyGen(skA, skB)→ (rkA→B): This operation takes the private key skA of Alice and key
material of Bob to create a re-encryption key rkA→B that can be used to transform data
encrypted for Alice to ciphertexts for Bob. The first schemes require both parties to
provide private key material. The output is the re-encryption key rkA→B.

Enc(M,pkA, w)→ (CA,w): During encryption with public key pkA, messages M are associated
with a keyword w, resulting in ciphertext CA,w.

ReEnc(CA,w, rkA→B)→ (CB,w): Like classical ReEnc, but search rights are also delegated.

Dec(CB,w, skB)→ (M): On input of a secret key skB and a ciphertext CB,w, this operation
decrypts the ciphertext CB into its underlying plain message M if CB was encrypted for
the user who owns the key pair that includes skB. The output is the plain message M .

Trapdoor(skB, w)→ (Tw): From a private key skB an encrypted query Tw for keyword w can
be generated.

Test(CB,w, pkB, Tw)→ (yes or no): With a trapdoor Tw it is possible to determine if a cipher-
text CB has been associated with keyword w.

For example, PRES can be used to only retrieve urgent mail that was delegated by another user.
As Alice goes on vacation, she wants Bob to be able to read her mails, which are encrypted
and tagged with keywords, such as urgent. Therefore, Alice hands a re-encryption key to the
mail gateway. From the huge bulk of Alice’s mail, Bob only is interested in her urgent mail.
Hence, Bob generates a trapdoor for the keyword urgent, which is then used by the gateway to
test the individual mails. Bob only receives matching ciphertexts. In conclusion, PRES extends
classical PRE with search functionality. Users can delegate both decryption and search rights
to others. As PRES is based on classical PRE, it uses PKI to solve the key distribution problem
and has similar trust requirements and scalability characteristics.

126

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

A.1.6 Properties of Proxy Re-Encryption Schemes

This section explains the most important properties of proxy re-encryption schemes. These
properties will subsequently be the basis for the evaluation of different proxy re-encryption
schemes.

Unidirectional, Bidirectional [101]: A proxy re-encryption scheme is unidirectional if a
delegation of decryption rights from Alice to Bob does not also allow re-encryption from Bob to
Alice. If such a delegation also enables re-encryption in the opposite direction, then the scheme
is bidirectional.

Single-Hop, Multi-Hop [41]: A proxy re-encryption scheme is single-hop if an initial cipher-
text can only be transformed into a re-encrypted ciphertext, but further re-encryption of that
already re-encrypted ciphertext is not possible. In contrast, a proxy re-encryption algorithm is
multi-hop if an already re-encrypted ciphertext can be further re-encrypted.

Collusion-Safeness (Master Key Security) [17]: A proxy re-encryption scheme is collusion-
safe if the proxy and delegatee are not able to learn the delegator’s private key. Even though
they collude by sharing key material

Interactive, Non-Interactive [17]: A proxy re-encryption scheme is non-interactive if the
delegator is able to generate a re-encryption key without having to interact with the delegatee
or a trusted third party. In such a scheme, only the delegator’s private key material can be
involved in the generation of a re-encryption key. If key material of both participants is required,
the scheme is interactive, as these participants have to interact to generate the re-encryption
key, for example as shown by Canetti and Hohenberger [41].

Key-Private [12]: A proxy re-encryption scheme is key-private if an adversary is not able to
identify any participant of a re-encryption key, even when given all public keys and extensive
interaction abilities. These abilities include obtaining the re-encryption of any chosen ciphertext
as well as getting any re-encryption key except for the re-encryption key being analyzed.

Lattice-Based [175]: Lattice-based algorithms rely on lattices as their underlying mathemat-
ical principle. Lattices are of particular interest, since no algorithm has yet been discovered
that could harness the benefits of quantum computers in the cryptographic analysis of lattices.
Therefore, lattice-based algorithms might still stay secure once quantum computers become
available.

Security Model: Since proxy re-encryption is an extension of public key encryption, the
same security notions serve as a basis to model a scheme’s security. However, these models are
extended by giving the adversary access to re-encryption keys and, in the case of CCA-security,
to a re-encryption oracle. Of particular interest are adapted versions of indistinguishability
under chosen-plaintext attacks (IND-CPA [17]), under (adaptive) chosen-ciphertext attacks
(IND-CCA1/IND-CCA2 [41]), or with harmless mangling (IND-RCCA [119]). In their paper,
Nunez et al. [128] presented a detailed description of the differences between the individual
notions. Note, however, that these security notions are mainly applicable to classical proxy
re-encryption. Other types of proxy re-encryption might require adapted security models to
accommodate their added functionality.

127

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Models of Computation [21]: The models of computation specify in which setting the
security of schemes are proven. Two models are relevant to this survey. In the standard model,
the adversary is only limited by the available amount of time and computational power. The
random oracle model simplifies proofs by introducing genuinely random functions.

A.2 Fully Homomorphic Encryption

The question of computing on encrypted data was raised in a paper by Rivest, Adleman, and
Dertouzos [152] in 1978 in which the encryption functions fulfilling this task were dubbed "pri-
vacy homomorphisms." A common problem motivation is the following. Consider a database of
sensitive (e.g., salary) data. Due to the sensitivity of the data, one might choose an appropriate
data encryption to ensure confidentiality. In this sequel, one is usually not able to perform cer-
tain arbitrary tasks or computations on the encrypted data (without the explicit access to the
key material) that violates certain security properties. Of course, a user can trivially download
his encrypted data, decrypt it, performing a certain task on the decrypted data, encrypt the
altered data again, and store it back to the database. However, note that this is only possible
if one has explicitly access to the (secret) key material under which the data was encrypted.
To circumvent the explicit knowledge of the (secret) key material to performing a certain task,
one might try to construct specific encryption algorithms which enable the execution of an at
least limited (i.e., not arbitrary) task without having access to that private key material. One
example is the widely known text-book RSA public-key functionality:

• Consider a public key (e,N) and a secret key (d,N) of the RSA system. The public key
is used to encrypt a message, the secret key is used for decryption. Encryption works as
follows: c = me mod N while decryption using the secret key reverts the ciphertext c to
m again as m = cd mod N = (me)d mod N . (This works since 1 = ed mod ϕ(N) holds
where ϕ is the Euler totient function.)

It is easy to see that the RSA function allows for performing a certain task (namely multipli-
cation of encrypted messages) under the public key (e,N) on the ciphertexts without having
explicitly access to the secret key (d,N):

• Consider that the ciphertext of a message m1 is constructed as c1 = m1
e mod N .

• A second ciphertext of a message m2 yields c2 = m2
e mod N .

• Without knowing the secret (decryption) key, one can perform the multiplication of en-
crypted messages as follows:

– c12 = c1 ∗ c2 mod N = m1
e ∗m2

e mod N = (m1 ∗m2)e mod N

• Decryption of c12 yields m1 ∗m2 = ((m1 ∗m2)e)d mod N as desired.

128

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Encryption schemes that allow for such limited operations on the ciphertexts are called (par-
tially) homomorphic encryption scheme. In the cryptographic literature exist a way more exam-
ples of such schemes, e.g., the well-known schemes of ElGamal [64], Paillier [142], etc. Note that
some of these scheme do not necessarily allow for the task of multiplication of the encrypted
messages; indeed, some of them allow for addition. However, note that any of these schemes
above allow only to perform one specific task, i.e., the multiplication or addition of encrypted
messages.

A long open cryptographic question was:

How to perform arbitrary tasks (i.e., function evaluations) on encrypted data publicly?

In 2009, Craig Gentry gave the first "practical" solution of such a cryptographic scheme, dubbed
fully homomorphic encryption (FHE) system [67]. The scheme is based in hard problems in ideal
lattices. Since then, a lot of progress has been made. Unfortunately, many schemes are still far
away from being deployed in realistic and plausible real-world scenarios. More formally, a FHE
scheme for an arbitrary evaluation function f consists of four efficient probabilistic algorithms
(Gen, Enc, Dec, Eval) as follows:

Gen(1k)→ (pk, sk): This operation generates and returns a key pair (pk, sk) for the security
parameter k as input in unary representation.

Enc(pk,M)→ C: This operation encrypt the message M with a private key pk and outputs
the ciphertext C.

Dec(sk, C)→M : This operation decrypts the given input ciphertext with the secret key sk
and outputs the message M .

Eval(pk, C)→ C ′: This operation evaluates the given input public key pk and ciphertext C
and outputs a ciphertext C ′.

For correctness, for C ← Enc(pk,M) as computed above, we in particular require that for any
evaluation of a ciphertext C ′ ← Eval(pk,C), it holds that Dec(sk, C ′) = f(M) for an arbitrary
computable function f . (Note that the function f is specified by the system.)

A.3 Malleable Signatures

Digital signatures are utilized in different fields such as the government or corporate environ-
ment. The basic idea of digital signatures is to maintain data integrity and authenticity as well
as ensure non-repudiation. For example, after signing a document it is not possible to change
its content and still have a valid signature.

If a message is digital signed, the signature can be utilized to check the message source (authen-
ticity) and also their non-repudiation. Non-repudiation describes that the author of a message
cannot dispute that he/she was not the originator of the signed message. The digital signature

129

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

can moreover be used to proof the integrity of the message. Conventional digital signatures
have been adopted for the usage with the most common data formats. Common signature
formats are PDF Advanced Electronic Signature (PAdES) [52], XML Advanced Electronic Sig-
nature (XAdES) [169] and CMS Advanced Electronic Signature where CMS [91] stands for
Cryptographic Message Syntax.

Besides the conventional digital signatures there are the so-called malleable signatures. The
general idea of malleable signatures is to be able to change the data content of a signed document,
while still maintaining the validity of the signature. This does not mean that it is possible to
change random parts in a message. The changeable parts as well as legal transformations have
to be predefined. It can be distinguished between three main categories of malleable signatures,
namely redactable signatures, blank digital signatures and sanitizable signatures. These three
categories are described in further detail in the following specification section.

Malleable signatures are following two main principles, beside the properties of conventional
digital signatures, which are first unforgeability and second editability. Unforgeability describes
a property which ensures that the signature to verify is not a fake digital signature. Also, it
describes that it should not be possible to tamper the digital signature. The second principle
is the principle which makes malleable signatures different from conventional digital signatures.
Basically, it should be possible to edit a message in a limited and predefined manner while
maintaining a valid signature.

A.3.1 Redactable Signatures

Redactable signatures were introduced in 2001 by Steinfeld et al. [165] utilizing redactable
signatures which allows the originator to redact parts of a signed message while the signature
stays valid on the remaining parts. After the message has been transferred to the receiver
she is now able to read the message except the redacted parts. Moreover, the receiver is also
able to check with utilizing the signature both the message’s source as well as the integrity of
the message. The advantage in using redactable signatures is that message parts, which the
originator doesn’t want to show, can be blacked out.

Figure 5 illustrates the basic idea of redactable signatures. This basic idea is based on splitting
the message to sign in different parts the so-called message blocks. Each of this message blocks
are going to be used for creating the signature. The hash value is calculated for each of these
message blocks. The resulting hash values are utilized to generate the signature of the document.
The sign operation requires a key pair related to the signer. The private key of the signer is
utilized to create the signature of the message including all message blocks. If some message
blocks should not be visible for the receiver, they can be redacted. This is the case when the
originator doesn’t want the receiver to get all information from the message. This occurs if a
message contains necessary information but also secret information which the originator does
not want to share. To redact a block of a message, the redact operation has to be performed. The
redact operation takes as input parameters the message, the related signature, the public key
of the signer and the so-called modification instruction. The modification instruction describes
which message blocks have to be redacted. This could simply be a list of indexes describing

130

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

which message blocks should be redacted. In the example the message block 3 is marked to
be redacted. According to this, the hash value of message part 3 has to be used and the
actual message block 3 has to be redacted (removed). The receiver receives depending on the
used scheme either the modified message together with the hash of the modified part and the
signature or a modified message and the updated signature.

Figure 5: Redactable Signature Concept

Redactable signatures can have different properties depending on the scheme utilized to redact
a message. Possible properties have been identified and listed with a detailed description below.

• Unforgeability: This property ensures that no one other than the signer can generate a
valid signature. Therefore, a valid signature ensures the message’s authenticity and if the
message has been redacted that the redaction has been performed correctly.

• Privacy: The privacy property ensures that the message receiver is not able to recover
any redacted information.

• Transparency: This property ensures that it is not possible for a third party to decide
who the redactor of the message was.

The main redactable signature operations are described as follows:

• Key Generation: KeyGen(λ)→ (sk, pk)
The KeyGen operation is an algorithm to generate a key pair consisting of the private
(secret) key sk and the corresponding public key pk with utilizing a security parameter λ
as input. The key pair is generated for the signer.

• sign: Sign(sk,msg)→ (σ)
The Sign operation takes as input a message msg and the private key sk. Each message
block of the message is used to create the signature σ, which is the operation’s output.

• Redact: Redact(msg, σ, pk,mod)→ (msg′, σ′)

131

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The redact operation Redact takes as input the message msg, the signature σ, the public
key pk of the signer and an instruction mod for modifying the message. A modifica-
tion instruction, basically, describes which message blocks from the message have to be
redacted (removed). After the message has been modified according to the instruction
the algorithm updates the signature accordingly. The modified message together with the
modified signature is returned.

• Verification: V erify(msg′, σ′, pk)→ val

The verification operation V erify takes as input the message msg, the signature σ and
the public key pk of the signer. Depending on the scheme it can also require the hash
value of the redacted message block. The return value val of this algorithm shows if the
signature for the given message is valid.

A.3.2 Blank Digital Signatures

Blank digital signatures were introduced by Hanser and Slamanig in 2013 [81]. This type of
digital signatures is part of the editable signatures. The general idea of blank digital signatures
is that the originator signs a document template. This template consists of parts for which a
value is either fixed of can be chosen from a predefined set.

Figure 6 illustrates the process flow of blank digital signatures. First the originator creates
the message template with its predefined choices. After successful creation the originator signs
the template. Next, the originator hands the template and appropriate permissions to the
instantiator. This instantiator creates an instance of the document. During the instantiation
procedure, the instantiator selects her choices contained in the message template. The result
of this instantiation procedure is a message instance. This message instance is signed by the
instantiator and send to the recipient. The recipient is now able to verify that the received
instance was derived from a valid template.

Figure 6: Blank Digital Signature Concept [81]

Some properties of blank digital signatures are listed as below [81]:

• Unforgeability: In the context of blank digital signatures, unforgeability describes that
nobody should be able to forge the template signature or the message instance signature
without having knowledge about any secret information. Secret information are describing
the private keys of the originator and the instantiator as well as the secret signing key of
the instantiator.

132

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Immutability: This property ensures that the instantiator (proxy) can only compute
instantiations of message templates which are explicitly intended by the originator.

• Privacy: The privacy property ensures that no entity without knowing the private keys
of the originator skOrig, the private key of the instantiator skInst and the secret template
signing key skτInst should be able to determine elements of the template message, which
haven’t been revealed through instantiations yet.

Blank digital signatures are utilizing different operations. The operations are listed and de-
scribed as follows.

• Key Generation: KeyGen(λ, sizet)→ (sk, pk)
The KeyGen operation generates a key pair consisting of the private (secret) key sk and
the corresponding public key pk and requires two input parameter. The first parameter λ
denotes a security parameter and the second parameter sizet describes the template size.

• Sign Template: Sign(τ, skOrig, pkInst)→ (στ , skτInst)
The Sign operation takes as input the template message τ , the private key of the originator
skOrig and the public key of the instantiator pkInst. The operation returns the signature
of the template στ as well as the secret signing key for the instantiator skτInst.

• Verify Template: V erifyTemp(τ, στ , pkOrig, pkInst, skτInst)→ val

The verify template operation V erifyTemp takes as input the template message τ to-
gether with the related template signature στ , the public keys from the originator pkOrig
and the instantiator pkInst, and the secret signing key of the instantiator skτInst and verifies
the signature of the template message. The return value val shows if either the signature
is valid or not.

• Instantiate: Instantiate(τ, στ ,M, skτInst, skInst)→ σM

The instantiation operation Instantiate takes as input the message template τ with the
related template signature στ , a message instance M , the secret template signing key of
the instantiator skτInst and also the private key of the instantiator skInst. The operation
outputs the signature σM for the corresponding message instance M .

• Verify Instance: V erifyInst(M,σM , pkOrig, pkInst)→ val

The verify instance operation V erifyInst is validating the signature σM of an instantiated
message. It takes as input the message instance M together with the message instance
signature σM and the public keys pkOrig and the instantiator pkInst. The return value val
describes if the signature is valid for the given message instance.

A.4 Anonymous Credentials

Attribute-Based Credentials (ABCs) technologies have been designed to enhance users’ privacy,
and for several years have been investigated as part of anonymous credential systems and group

133

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

signatures. ABCs are issued like ordinary cryptographic credentials (e.g., X.509 credentials)
using a digital (secret) signature key; basically a PKI with privacy enhancing features. In
ABCs, the main enhancing feature is that credential’s attributes could be transformed into
unlinkable and non-transferable presentation tokens8 able to protect the holder’s privacy, while
offering the same level of security.

Overview

A typical ABC system includes the following entities and interactions:

Figure 7: ABC System: Entities and Interactions [150]

• Issuer: it is an infrastructure-based (trusted) identity provider also known as an at-
tribute authority; this entity or organization is responsible of issuing credentials. It is also
responsible for vouching for the correctness of the information contained in the credentials.

• Users: entities to which the identity providers (issuers) will issue the (ABC) credentials.
Such credentials are used to assert claims about user’s identity to service providers.

• Verifier: any relying party willing to protect access to resources, information or services.
Revocation Authority: this (not a mandatory) entity is responsible for revoking issued
credentials and preventing their further usage.

• Inspector: (not mandatory) entity which consists of a trusted authority comprised of
either a single entity or by a multi-party cooperation. The inspector’s role is to de-
anonymize the user under specific situations (e.g., misuse or liability). Ideally, the ca-
pability of inspection should be done in a distributed fashion, and it must be compliant

8 A presentation token is a digitally signed container of attribute information [143]

134

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

with a presentation policy that specifies which information should be recoverable by an
inspector and under which circumstances.

Operations

Figure 8: ABC System: Basic Operations [150]

Figure 8 illustrates the following operations:

• Issuance: the credential issuance is a multi-round interactive protocol between the issuer
and the user. The Issuer defines the issuance requirements that must be met by the User
in order to get a credential.

• Presentation: In a presentation protocol the Verifier sends the User a presentation
policy, which defines, among other things, what credentials are accepted and what kind of
proof is required from the User. Presentation uses commitment schemes to enable users to
commit a certain message without showing it to the Verifier, and zero-knowledge proofs,
to enable a User to prove to a Verifier that they know the secret behind the committed
message (credential).

• Revocation: The revocation mechanism requires that both users and verifiers have the
most recent revocation information from the corresponding revocation authority, which is
the entity responsible for revoking credentials and for making available updated revocation
information. Users are responsible for updating their non-revocation evidence.

• Inspection: presentation tokens are by default fully anonymous. Nevertheless, full
anonymity could lead to misuse, abuse or even fraud. Thus, inspection allows the user to
encrypt one or more attribute values under the public key of a trusted inspector under
specific inspection grounds.

135

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Properties

Attribute-based credentials are a combination of several cryptographic building blocks, which
include signatures, pseudonyms, zero-knowledge proofs, encryption and revocation mechanisms.
Together, those building blocks enable a number of security and privacy features that guarantee
that 1) a user cannot create valid presentation tokens without having the proper underlying
credentials and keys; and 2) presentations tokens do not reveal more information than what
is intentionally disclosed by the user, both security and privacy features are achieved by the
following properties.

• Multi-show unlinkability: a credential can be used multiple times without the resulting
evidence becoming linkable.

• Selective disclosure of attributes: allows users to prove only a subset of attributes to
a verifier.

• Predicate proofs: consist of statements that allow to prove a property of an attribute
without disclosing its actual value, example of these statements are the logical operators.

• Proof of holdership (ownership): a cryptographic evidence for proving ownership or
possession of a credential without disclosing the credential.

• Non-transferability: key binding can be used to bind one or more credentials of a user
to the same secret and discourage users to perform credential pooling.

• Unforgeability: users cannot create new credentials or change attribute values in the
credentials they obtained by from an issuer

• Scope-exclusive pseudonyms: a certified pseudonym unique for a specific scope and
secret key, i.e. a single pseudonym can be created for each credential.

• Carry-over attributes: it relies on the assumption that the user already possesses a
credential, from which a given attribute can be included into the new credential without
disclosing the attribute value to the Issuer.

• Cross-credential proofs: allows users to prove relations between attributes from two
or more credentials without revealing them to the verifier.

• De-anonymization: it is an optional feature that allows an authority to reveal the
identity of a user in cases of accountability and non-repudiation.

• Revocation: in case of misuse, it allows the revocation of issued credentials to (misbe-
having) users. Thus, revoked credentials cannot longer be used to generate presentation
tokens.

136

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

A.4.1 Idemix

There exist a number of implementations of attribute based credentials, which are based on
different cryptographic primitives. Among the most successful technologies the Identity Mixer
(Idemix) - an anonymous credential system developed by IBM Research- enables strong authen-
tication while at the same time provides relevant privacy properties. The basic Idemix ABC
System comprises of protocols for a user to join a system, register with an issuing organization
and obtain multi-show credentials to further present them to a verifying organization; thus the
entities in the system are users who obtain and show credentials, issuing organizations and or-
ganization verifying credentials (cf. Figure 9). There exist an additional (optional) organization
known as de-anonymization organization.

Figure 9: Idemix

A User U requests a credential C containing certain attributes (attr) to an issuing organization
OI ; U establishes a pseudonym with OI . OI produces C by signing a statement containing
attr and N . Using a zero-knowledge proof, U presents (shows) the credential to a verifying
organization OV , Convincing OV of possessing a signature generated by OI on a statement
containing attr and N , and knowing the master secret key SU associated to N . The de-
anonymization mechanism requires the existence of a de-anonymization organization OD. U
encrypts N with OD’s PKD. The encryption is verifiable EVD(N), i.e. OV has a proof that
OD can decrypt and reveal N from OV ’s show protocol transcript. [39]

Idemix provides a number of privacy properties described below [22]:

• Proof of ownership: idemix allows a user to proof possession of the credential without
involving the IdP.

• Selective disclosure of attributes: Using verifiable encryption Users can choose which
attributes to disclose or what to prove about them.

• Unlinkable multi-use: Using the zero-knowledge property of the proof provides unlink-
ability of different showings of a credential.

137

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Non-transferability: the user’s master secret is linked to all user’s credentials, sharing
a credential implies sharing one’s master secret.

• Predicate proofs: it supports proof of predicates over attributes, for instance proving
equality among attributes.

• Cross-credential proofs: users can prove that attributes encoded in different credentials
fulfill a specified predicate.

138

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

B Details for Additional Cryptographic Technologies

B.1 Authentication

In this subsection, we provide more details on the password-based cryptographic technology
TPASS; you can find the fact sheets in Section 4.1.

B.1.1 TPASS

Access to potentially sensitive data is currently often protected by password based authentica-
tion schemes. However, such schemes are inherently vulnerable to, e.g., dictionary attacks. One
mitigation option is to request users to use long and truly random passwords. Alternatively, if
the password verification is done by an online server, one can let the server throttle verification
attempts after a certain number of subsequent errors. However, this approach still suffers from
the vulnerability that the password can be guessed offline if the server gets compromised.

A natural solution to this problem is provided by TPASS (threshold password-authenticated
secret sharing). In such schemes, the verification process is spread across multiple servers. If the
correct password is entered, the stored information (e.g., a strong cryptographic key for further
applications) is revealed to the user. However, if a wrong password is entered, the information
does not get disclosed. The password and the stored data now remain secure also against offline
attacks as long as no more than a predefined threshold of servers gets compromised.

Despite this confidentiality guarantees, the first TPASS protocols were still not fully secure in
the real world, as they did not provide any guarantees if a user accidentally tried to authenticate
to a malicious set of servers, which is a common situation in phishing attacks, were a user is
requested to enter his password, e.g., on a fake website. More recent TPASS solutions [33] do not
suffer from this problem anymore. That is, they even if the user is persuaded to authenticated
to fake servers, an attacker is not able to learn neither the password attempt nor the stored
data. Note here that even if more than the threshold of servers gets compromised, they still
have to mount an offline attack against the password, i.e., they do not learn the password in the
plain. Furthermore, as long as no more than the threshold of original servers gets compromised,
it is also infeasible for an attacker to change the data that was stored by the user. That is,
as long as sufficiently many servers remain honest, the user is guaranteed that the downloaded
data corresponds to the data that he originally stored spread across the servers – even if all the
servers he tries to authenticate to are fake.

On a very high level, TPASS protocols have the following two interfaces:

• Store(pw, d, (Si)ni=1, t): On input a password pw, the data d to be stored on the Server Si,
and a threshold t, this algorithm outputs partial data (σi)ni=1 to be sent to the different
servers.

• U.Retrieve(pw′, (S′i)ti=1) ↔ {S.Retrieve(σ′i)}ti=1: This is an interactive protocol between
the user and a set of t servers. The user takes as input a password attempt pw′ and the

139

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

identities of the servers, while each server takes as input his partial data. At the end of
the interaction, the user either obtains data d′ or an error symbol ⊥.

Besides correctness, requiring that an honest user interacting with honest servers is always
able to obtain his original data, TPASS schemes need to guarantee the security features discussed
above.

As a simplified variant of TPASS, distributed password verification protocols can be
used to verify the correctness of a password attempt in a way that guarantees security against
offline attacks as long as not too many servers get compromised. The difference to TPASS
protocols is that in distributed password verification protocols, the user does neither store nor
retrieve any associated data, but the servers merely learn whether the password attempt was
correct, and can then decide, e.g., whether or not to grant the user access to some online
resource.

B.2 Access to Encrypted Data

In this subsection, we provide more details on Search on Encrypted Data, Private Information
Retrieval, Proofs of Retrievability, and Provable Data Possession; the fact sheets can be found
in Section 4.2.

B.2.1 Search on Encrypted Data

Consider a database stored by a potentially untrusted third party. It is natural that a user—who
wants to store data in a database—encrypts this data under his (public) key before uploading it.
Naively, as with homomorphic encryption, computing certain functions or tasks on encrypted
data is a non-trivial task without the explicit access to the corresponding key material. Here,
we consider searching on encrypted data. One of the early works on that are given by Song,
Wagner, and Perrig [163] in 2000. Of course, trivially, the user can download all of his encrypted
data, decrypt it (using his key material) and search on the plaintext data for some (e.g., string)
patterns. Unfortunately, the communication overhead of such approach is linear in the size of
the database. Hence, one is interested in more efficient solutions. Searchable encryption tries
to solve this problem, i.e., provide a secure cryptographic solution such that the search commu-
nication complexity is lower than downloading the entire encrypted database and performing
the search on the decrypted data.

Searchable encryption comes in at least two different forms, i.e., the private-key and public-
key flavor. (The private-key case is also often dubbed symmetric searchable encryption.) The
different forms encompass for example oblivious RAM [72], fully homomorphic encryption [67],
or public-key encryption with keyword search [27]. In this overview, we start with describing the
private-key (or, symmetric) case, dubbed searchable symmetric encryption (SSE), and follow
the work of Curtmola et al. [47] for the definitions. In this scenario, a user encrypts the data
to be stored on the server with his (private) key and can deploy access patterns to the data
before the encryption. This is done by creating a trapdoor for the key on keywords which are

140

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

associated to the encrypted data. Essentially, this allows for an efficient search. Hence, only
the user (with the corresponding key) is able to search on the encrypted data while keeping
the communication complexity low in comparison to the trivial solution above. We note that
this approach usually needs pre-processing of the data to be stored and, thus, the complexity
of pre-processing is as least as large as the unencrypted data set. However, once the encrypted
data is stored on the server, the (communication) complexity is low.

More formally, a SSE scheme in the the sense of [47] consists of five efficient algorithms (Gen,
Enc, Trap, Search, Dec) as follows:

• Key generation. Gen(1k), on input the security parameter 1k in unary, outputs a
(private) key K.

• Encryption. Enc(K,D), on input a key K and a data set D = (D1, ..., Dn), outputs a
ciphertext set C = (C1, ..., Cn) and a secure index I.

• Trapdoor generation. Trap(K,w), on input a key K and a keyword w, outputs a
trapdoor T .

• Searching. Search(I, T), on input the secure index I and the trapdoor T , outputs a set
X of (lexicographically-ordered) document IDs.

• Decryption. Dec(K,C), on input a (private) key K and a ciphertext C, outputs a
message M or an error.

For correctness, we have that for all possible data sets D, for all ciphertext-secure-index pairs
(C, I) ← Enc(K,D), for all keywords w, we have that the search on I and the trapdoor
(generated from Trap(K,w)) yields the D-corresponding IDs in X as well as Dec(K,C) = D.

For the public-key searchable encryption scenario, we follow the work of Boneh, Di Crescenzo,
Ostrovsky, and Persiano [27] which define public-key encryption with keyword search (PEKS).
Consider an email scenario where Alice sends Bob an encrypted message under Bob’s public
key. With a PEKS system, Alice can determine keywords that are attached to the encrypted
mail in a specific (i.e., encrypted) way. Bob can now give a trapdoor for a keyword to the email
server such that this server is able to search for that keyword attached to the emails (e.g., if
the emails are labeled with the keyword "urgent").

A PEKS systems consists of four efficient algorithms (Gen, PEKS, Trpd, Test) as follows:

• Key generation. Gen(1k), on input the security parameter 1k in unary, outputs a public
and private key pair (pk, sk).

• Searchable encryption generation. PEKS(pk,w), on the public key pk and a key-
word w, outputs a searchable encryption S.

• Trapdoor generation. Trpd(sk, w), on input the secret key and a keyword w, outputs
a trapdoor t.

141

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Testing. Test(pk, S, t), on input a public key pk, a searchable encryption S, and a
trapdoor t, outputs "valid" or "not valid". In particular, for S = PEKS(pk,w) and
t = Trpd(sk, w′), Test outputs "valid" if and only if "w=w’".

B.2.2 Private Information Retrieval

Nowadays, knowledge about online users’ preferences are well known as an important asset for
service providers, and for many years those preferences were treated a secret for all entities ex-
cept for the server itself, always under the assumption that the server was a trusted entity and
would never employ such information against users [45, 11]. However, for some years, this situ-
ation has raised many security and privacy concerns, and it has been demonstrated that there
are no reasons for such assumptions. On the one side, users’ privacy might be compromised due
to potential security (database) leaks, and on the other side, service providers could just sell or
exchange this information without users being aware of it. In this regard, private information
retrieval solutions are aimed at enabling users to keep their preferences private even from the
server (service provider). Thus, PIR is the task that allows the user to retrieve a record from a
(database) server, while hiding the identity of the record from the (database) server [45, 11, 71].
PIR protocols could be applied in a number of application scenarios including access to the
cloud. There exist a number of approaches that go beyond applying anonymization techniques
or downloading an entire database, these approaches are commonly classified either as theoret-
ical private information retrieval or computational private information retrieval. 1) Theoretical
Private Information Retrieval is the approach where the privacy of users is protected indepen-
dently from the computational power of the attacker, i.e. the server is not able to determine
information of user’s query even with unlimited computational power [11, 71]. 2) Computa-
tional Private Information Retrieval is the approach where in contrast it is assumed that the
privacy of the users’ query is protected by considering an attacker with limited computational
power (polynomial-time computation) [71].

XPIR: Private Information Retrieval for Everyone

The XPIR consists of a PIR protocol that enables users to retrieve information from a database
without revealing what has been retrieved based on a ’computationally-Private Information
Retrieval (cPIR)’ scheme that do not need the database to be replicated (single server PIR)
[122]. Generally speaking, there are two types of PIR protocols: single server PIR, and multi-
server PIR. In a single server PIR protocol, only one server hosts and serves the database.
Users’ queries will be answered by one server. By contrast, in a multi-server PIR protocol, the
database is replicated to multiple servers and the queries will be answered jointly by the servers.

The main idea is based on lattice-based cryptography and Ring-LWE which make cPIR practical
and feasible even for users that do not have access to a high-end server. A lattice is defined as
a set of points in n-dimensional space (Rn) with a periodic structure. In addition, the authors
used the time as an important metric which is needed for a client to privately retrieve an
element.

Generally, the proposed protocol is based on simple cPIR which is formally described as follows:

142

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Setup: set up an instance of the crypto-system with k security bits

• Query generation (encryption): This process is done to retrieve an element (e.g. i0). To
this end, for the i-th query element qi, if i 6= i0, then a random encryption of zeros is
generated. Otherwise (if i = i0), a random encryption of ones is generated. Ultimately,
the ordered set q1, ..., qn will be sent to the database.

• Reply generation: In this phase, the bits that can be absorbed in a ciphertext are consid-
ered L0. Then, all the mi chunks of L0 are split, and they are called mi,j . As a result, Rj
will be calculated as a summation of absorbed chunks.

• Reply extraction (decryption): This phase decrypts the coordinates of the reply vector R
and recovers all the chunks of the cipher text.

cPIR: Improving the Robustness of Private Information Retrieval

The cPIR protocol tries to improve the robustness of a basic PIR [71]. The main steps of the
proposed protocol are as follows <:

• Allowing more responding servers to collude without compromising privacy, and be Byzan-
tine, respectively. The authors also present a t-private v-Byzantine-robust k-out-of-L PIR
protocol for any 0 < t < k and v < k − b

√
ktc.

• Improving the scalability of the proposed method in the previous step by proposing a
PIR system which has hybrid privacy protection. In fact, the authors aim to amend
the proposed protocol in terms of engaging more servers in the collusion procedure, i.e.
queries have information-theoretic protection if a limited number of servers collude (up to
t servers). However, in case of happening collusion by all the servers (more than t servers),
queries imply computational protection.

• Improving the functionality of the proposed protocol in the first step in terms of communi-
cation cost. The authors suggest to use information-theoretic protection to the contents of
the database against collusions of limited numbers of the database servers. It is expected
that this can be done at no additional communication cost or increase in the number
of servers, i.e. this improvement can add τ -independence to the proposed protocol, for
0 ≤ τ < k− t− v(2− v/k), with no increase in the number of servers or in communication
cost.

Available implementation

Percy++ is a C++ implementation of the information-theoretic private information retrieval
(PIR) protocols, which provide t-private v-Byzantine-robust τ -independent k-out-of-L private
information retrieval.

• k-out-of-L: there are L distributed database servers, and only replies from k of them are
needed.

143

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• t-private: no coalition of up to t servers receives any information at all about the block of
interest

• v-Byzantine-robust: up to v of the servers that do reply might give incorrect answers;

• τ -independent: the database is split between the servers so that no coalition of up to τ of
them can determine the contents of the database itself (τ = 0 means all the servers just
have a complete copy of the database)

Any choice of t, v, τ, k and L will work, so long as they satisfy the following conditions:

They are all non-negative integers.

0 < t ≤ t+ τ < k ≤ L,
0 ≤ v < k − t− τ − L

B.2.3 Proofs of Retrievability

Proofs-of-retrievability (POR) systems are closely related to PDP systems. The idea is to give a
short verifiable proof (done by a server) that a specific file on a server is in some sense authentic
and unchanged without the necessity to deliver the entire file to a verifier (e.g., a client). Note
that this is different in comparison to a PDP system since in a POR system the client is able
to retrieve the file.

More concretely, a client encodes a file and delivers it to a server (e.g., Amazon S3). The client
can now check specific spots of the remote file in a challenge-response manner without retrieving
the entire file back from the server. Concretely, the client determines a subset of file blocks to
be checked, sends a request, and the server response with computed result over those blocks
that can be verified. The client now is able to check if the response and is able to verify that
the file is unchanged in any meaningful manner. One property of a POR system is that the
response is shorter in communication than retrieving the entire file. Such systems can be used
in scenarios with backup system where a backup file is checked not on a regularly basis but
only from time to time. For example, the framework of Juels and Kaliski (JK) [111] assures
that a file which is stored on a server can be retrieved with high probability without sending
the entire file to the verifier. Further works (e.g., the Shacham-Waters (SW) framework [158])
can be used to reduce the communication complexity of such proofs of retrievability further.
The Bowers-Juels-Oprea (BJO) POR framework [111, 29] generalizes both earlier frameworks of
JK and SW and results in variants and improvements of previous PORs. The BJO framework
follows the JK framework and defines a POR scheme consisting of the algorithms Gen, Encode,
Challenge, Respond, Verify, and Extract:

• Key generation. Gen(k, pp) takes as input the security parameter k and the public
parameters of the system, and outputs a secret key k for the symmetric case (or a public
and private key pair (pk,sk) in the asymmetric case; however, we focus on the symmetric
case here). This is run by the client.

144

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Encoding a file. Encode(k, F, s) takes as input the secret key, a file F and a client state
s, and return an encoded file F ′ and a file handle h. This is also run by the client.

• Generating a challenge. Challenge(h, k, s) takes as input a file handle h, a secret key
k, and a client state s, and outputs a challenge value c. This is run by the client.

• Generating a response. Response(h, c) takes as input a file handle h and a challenge
c, and outputs a response r. This is run by the server.

• Verify a response. V erify(h, c, r, k, s) takes as input a file handle h, a challenge c, a
response r, a secret key k, and a client state s, and outputs a verdict "true" or "False".
This is run by the client.

• Extract a challenge. Extract(h, k, s, pp) takes as input a file handle h, a secret key k,
a client state s, and the public system parameters, and outputs a file F . This is run by
the client.

To construct a POR system out of a POR scheme, we proceed in two phases as follows:

• The challenge-response phase. The client runs Gen to obtain k. We assume that the
server is of possession of an (encoded) file F . (The encoding could be an error-correction
code.) Further, the client computes a challenge c via Challenge and sends c to the server.
The server calculates the response r which the client verifies via V erify. This can be as
many times as the client likes to perform. However, if any of the responses do not verify,
the client aborts else it accepts.

• The extracting phase. The client is able to retrieve F via Extract. Note that in many
cases the file has to be decoded with an error-correction code.

B.2.4 Provable Data Possession

Storing data on untrusted servers is very common in our digital world. It ranges from e-mail
systems (e.g., Google’s Gmail) over online storage systems (e.g., Apple’s iCloud) to content
management systems (e.g., Microsoft’s SharePoint). It must be the case that data stored in
either of such system remain in full control of the client, i.e., no server should be allowed to alter
or modify data stored in its databases without the permission of the client. To check whether
the data at the server’s side is still present and unaltered, a client might want to retrieve a proof
of data possession. In particular, these proofs should be trustworthy in a sense that no server
should be able to provide valid proofs for altered client data.

In the following, we will describe a Provably Data Possession (PDP) system that allows to give
such proofs of data possession. Consider a client-server scenario, a PDP system allows a client to
securely and efficiently check whether data is correctly and consistently stored at a server’s side
without retrieving all the data. In particular, consider a setting in which a server is untrusted;
i.e., it might alter or delete client’s data stored at the server’s end without being delegated to do
so by a client. Trivially, the client can retrieve all the data and check for consistency. Clearly,

145

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

one is interested in more efficient solutions. That is the client should not have to retrieve all of
the data, but at the same time is still satisfied by being able to verify that the server keeps the
right data (i.e., exactly the data that was provided by the client before).

The idea of PDP provides the solution for securely verifying client’s data stored on an untrusted
server in a very efficient manner. Say that a client wants to store a data file on a server. The
client and the server can use a PDP system to proof that the data stored on the server was not
altered in any means. Briefly summarized, the client generates and stores a public and secret
key pair which is the result of setting up the PDP system. Further, the client takes one or
more data blocks and tags those data blocks using the secret and public key pair. The public
key, the data blocks, and the associated tags are sent to the server and are no longer needed at
the client’s end, i.e., the client deletes the data blocks and the tags and only keeps the public
and the private key pair. Further, the client generates a challenge that corresponds to some
index of some data block stored at the server. This challenge is then sent to the server and the
server provides a proof of possession using the challenge, the public key, the data blocks, and
the associated tags. Having generated the proof of possession, the server sends this proof to
the client which is now able to verify the proof (with the help of the secret key), i.e., the client
checks if the data is still consistent with that what the client had expected.

More technically, a PDP system uses a PDP scheme where a PDP scheme consists of four
efficient algorithms (Gen, Tag, GenProof, CheckProof) (where we follow the definition of [14]):

• Key generation. Gen(k) takes as input the security parameter k and outputs a public
and secret key pair (pk, sk). This is run by the client.

• Tagging a data block. Tag(pk, sk,m) takes as input the public and secret key pair as
well as a data block m and returns the verification tag t. This is also run by the client.

• Generating a proof. GenProof(pk,B, c, S) takes as input the public key pk, an ordered
collection of data blocks B, a challenge c, and an ordered collection S (which contains
verification metadata), and outputs a proof P . This is run by the server.

• Checking a proof. CheckProof(pk, sk, c, P) takes as input the public and the secret
key pair, a challenge c, and a proof P , and outputs a verdict "true" or "false." (If and only
if CheckProof returns "true" then the proof verifies.) This is run by the client.

To construct a PDP system out of a PDP scheme, we proceed in two phases as follows:

• The setup phase. The client runs Gen to obtain (pk, sk) and tags each data block
m1, ...,ml using the tagging algorithm Tag. The public key, the data blocks m1, ...,ml,
and the associated tags t1, ..., tl are sent to the server.

• The challenge phase. The client generates a challenge c such that c indicates on which
data block mi the client would like to receive a proof of possession. The challenge is sent
to the server. Further, the server generates a proof P of possession using the challenge
c, the public key pk, the data blocks m1, ...,ml, and the tags t1, ..., tl. The client receives
the proof P from the server and verifies if CheckProof outputs "true."

146

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

B.3 Other Technologies

In this subsection, we provide more details on Verifiable Computing, Unlinkable Pseudonyms,
Secret Sharing, and Remote Attestation; the fact sheets on some of the technologies can be
found in Section 4.3.

B.3.1 Verifiable Computing

Given the increasing popularity and decreasing prices of cloud computing, more and more
tasks are currently being outsourced into the cloud. However, letting a server perform sensible
computations requires substantial, potentially unjustified, trust into this server. Namely, one
needs to trust the server that the requested computations were computed correctly on the
correct inputs. It is therefore required to develop efficient means to verify the correctness of the
results returned from a server.

A naive solution to this task would be to let the server perform the computations, and then
download all the outsourced data, verify its integrity, execute all the computations locally,
and compare the results. Obviously, this approach renders the entire idea of outsourcing com-
putations to the cloud void. Thus, a refined formulation of the task considered in verifiable
computing is how the correctness of the result provided by the server can be verified in a way
that requires substantially less computational effort than performing the entire computation
locally.

Slightly more formally, a verifiable computing scheme consists of three parties. The client
provides some input x to the server, who is requested to evaluate a function f on x, i.e., the
server is requested to compute y = f(x). If this computation was done correctly, then the
verifier should accept y, otherwise it should reject with high probability. In the literature one
also finds security models involving, e.g., multiple servers; yet, such settings are beyond the
scope of this overview.

We refer to Buchmann et al. [102] for an exhaustive overview of the state of the art.

A verifiable computing scheme consists of four probabilistic polynomial time algorithms (Key-
Gen, ProbGen, Compute, Verify).

• KeyGen: This algorithm takes as input the security parameter and the function f to be
evaluated, and returns a secret key sk, a public verification key vk, and an evaluation key
ek.

• ProbGen: This algorithm takes as input the secret key sk and the client’s input x, and
outputs a decoding value dx and a public encoding ex of the data x.

• Compute: This algorithm performs the actual computation, taking the evaluation key
ek and the encoding value ex as inputs. It outputs an encoding dy of y = f(x).

147

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Verify: The verification algorithm takes as inputs the verification key vk, the encoding ey
of y, and the decoding dx value of x. It either outputs y if the computation was performed
correctly, or an error symbol otherwise.

Let us next discuss some of the key aspects of verifiable computing:

Efficiency: In a verifiable computing scheme, the client typically has to perform some pre-
processing on the input x. If this pre-processing and the work required from the verifier
are less than the costs of directly performing the computation locally, the scheme is said
to be efficient. Depending on the concrete scenario, also amortized efficiency might be
sufficient. In this case, the client has to perform a computationally expensive setup phase
once, while the verifier’s costs are comparatively low. Thus, after a certain number of
computations, the average costs become less than those of local computations.

Privacy: Privacy means that the server and/or the verifier do not learn anything about the
client’s input x apart from what can actually be inferred from y. For instance, when
processing sensitive data such as electronic health records, it might be required that the
cloud provider performing the computations never gets access to the plaintext data but
only has access to, e.g., encryptions thereof. Similarly, in such a scenario it might also be
required that the verifier (e.g., an insurance company) only learns statics on the client’s
blood pressure or blood sugar level, but not the concrete measurements.

Verifiability: Here one distinguishes between public and private verifiability. A scheme is said
to be publicly verifiable if any third party learning y and potentially the client’s public
verification key vk can check the correctness and integrity of the result. On the other hand,
a scheme is privately verifiable if the verification requires access to secret information only
known by the client.

Functions: The class of functions supported by a verifiable computing scheme determines the
flexibility of the scheme. For instance, certain schemes found in the literature can only
be used to evaluate polynomials up to a certain degree (which is sufficient, e.g., when
one only wants to compute standard statistics on the client’s data), while other schemes
support arbitrary arithmetic circuits or even arbitrary C code. As a rule of thumb, the
efficiency of a scheme decreases with its generality.

B.3.2 Unlinkable Pseudonyms

Pseudonyms can be thought of as privacy-friendly counterparts to public keys by allowing users
to control the linkability of their actions. If a user decides that two actions should be linkable, he
can reveal the same pseudonym twice; if, however, two actions should be unlinkable, the user can
use different pseudonyms such that it is infeasible to determine whether the two pseudonyms
have been generated by the same or two different parties. On the other hand, the receiver
of a pseudonym is ensured that the user knows a corresponding secret key, and therefore is
guaranteed that only legitimate holder of that key can reproduce a pseudonym.

148

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The controlled linkability is achieved by using scopes. A scope is a specification of the context,
which is known to the user and the receiver of the pseudonym. For instance, for an email
service, the scope could simply be the email address: the user would then be linkable over
multiple logins to his email account (which is inherently necessary as the user could otherwise
not access previous emails), but he would not be linkable over different email accounts. Similarly,
a service provider could use the date and time to derive the scope. Then, for instance, multiple
logins of the same user within a fixed time-period could be detected, while different access across
those time periods could not be associated with each other. By using (application dependent)
appropriate time periods, the service provider would not learn access patterns of the user, while
it would still be guaranteed that the user did not share his login credentials with others, as this
would result in a high number of collisions within each time period.

The interfaces of scope exclusive pseudonyms are as follows:

• KeyGen(1λ): On input the security parameter λ, this algorithm outputs a secret key sk
for a user.

• NymGen(scope, sk): Taking a scope and a user secret key sk, this algorithm outputs a
pseudonym nym for the given user under the given scope, together with a proof π showing
it’s well-formedness and knowledge of sk. The generation of nym is deterministic.

• NymV erify(scope, nym, π): This algorithm takes as input a scope, a pseudonym, and a
proof, and returns a single bit indicating whether to accept or to reject the pseudonym
and proof for the given scope.

The security requirements for scope exclusive pseudonyms are completeness, unlinkability, un-
forgeability. Completeness requires that an honest user can, for every scope, generate pseudonyms
and proofs which are accepted by an honest receiver. Unlinkability says that no receiver can
decide whether two pseudonyms for different scopes have been derived from the same sk or
from different secret keys. Finally, unforgeability says that only the legitimate owner of sk can
produce a valid pseudonyms and proof for this secret key.

For a formal treatment of scope exclusive pseudonyms, we refer to Camenisch et al. [35].

B.3.3 Secret Sharing

Consider a user who wants to store personal information on potentially untrusted servers in a
way that guarantees availability and confidentiality. Assume furthermore that the user plans
to access the data from numerous different devices. Then simply encrypting the data before
sending it to the servers is not a user-friendly solution, as the user would have to always carry
his secret decryption key with him. This becomes even worse if the user intends to share the
data with other users in the system, which would result in complex key management issues.
In addition, an encryption scheme can only give computational privacy guarantees to the user.
That is, a computationally unbounded adversary could always recover the data contained in
the ciphertexts, and thus violate the confidentiality of the data. As an attacker’s capabilities

149

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

in the far future cannot be reliable estimated at the time of storing the data (e.g., given recent
progress in the area of quantum computers), this encrypt-then-store approach is questionable
when long-term privacy is an issue.

An alternative and fully key-less approach to the initial problem is offered by secret sharing
schemes, which were independently introduced by Shamir [159] and Blakely [24]. Those are
schemes which split the given data m into multiple, say n, shares such that only predefined
qualified subsets of the shares can be used to recover the initial data, while all other subsets of
shares do not contain any information about m. Depending on the scheme, this can even be
guaranteed in an information theoretic sense, i.e., even a computationally unbounded adversary
would not be able to infer any information about the message from such an unqualified subset
of shares.

Let us elaborate this a bit more formally for so-called threshold secret sharing schemes, which
are most reasonable to be used within the context of CREDENTIAL. In such schemes the user
first defines a number n of servers he wants to store his data on, as well as a threshold t such
that the original message can be recovered from any t + 1 shares, while no subset of up to
t shares contains any information about the data. The user would then apply the resulting
scheme to the m, and send one share σi to each server Si . Now, the confidentiality of the user’s
data would be guaranteed as long as no more than t servers become corrupt and collaborate.

The interfaces of such basic threshold secret sharing schemes are as follows:

• Share(n, t,M,m) : This algorithm takes as input the number n of servers, the threshold
t, the space M , of potential message to be shared, and the secret message m ∈ M . The
algorithm then outputs hares σ1, ..., σn.

• Reconstruct(n, t,M, {σik}lk=1) : Taking l > t shares as inputs, this algorithm reconstructs
the shares data and returns m.

The basic security properties of secret sharing are privacy and completeness. The former says
that the reconstruction algorithm always returns the original data if the input shares were com-
puted honestly. The latter guarantees that no unqualified set of shares contains any information
about the data.

Extensions

The above security requirements can be extended in various ways, depending on the concrete
application scenario of secret sharing schemes. In the following, we briefly discuss some of those
extensions:

• Robustness: The basic security requirements only guarantee the privacy of the data,
and that the original data can be reconstructed from an honest qualified set of shares.
However, they do not give any security guarantees if one or more of the servers maliciously
alter their shares before handing them back for download to the user. Robustness now

150

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

guarantees that the user is always able to reconstruct the initial message from sufficiently
many (or all) shares, even if some of those shares have been modified. Furthermore, there
exist schemes that allow the user to determine which shares have been altered.

• Auditability: If one uses secret sharing schemes for long-term storage of rarely accessed
data, it is desirable to have efficient means to remotely check whether all shared data
is still available at the servers without having to download the entire data. A secret
sharing scheme is auditable if such a procedure is offered. Furthermore, it is called publicly
auditable if the remote check does not need to be done by the user (i.e., the data owner)
himself, but can be outsourced to an external entity such that even an external auditor
collaborating with a subset of corrupt servers still cannot learn any information about the
shared data.

• Verifiability: In certain situations, it is necessary that the user can prove that he actually
sent consistent shares to the different servers, i.e., that the shares stored in the different
locations would actually reconstruct to a valid file. This might, e.g., be required if servers
should take over liability in the case that they lose the user’s data, as otherwise a malicious
user could simply send inconsistent garbage to the servers and then sue them for having
lost his data. Secret sharing schemes offering an efficient way for the user to prove the
consistency of the distributed shares are called verifiable.

• Proactivity: In the original setting, one assumes that no more than t servers become
corrupt and pool their shares. However, in the case of long-term storage, this might
be a very strong assumption, as it would imply that no more than t servers become
compromised over the entire life time of the system. In proactive secret sharing schemes,
the servers can periodically re-randomize their shares without involving the users. That is,
the servers interactively update all their local shares in a way that guarantees that all data
leaked to an adversary before the update becomes void after the re-randomization. In this
way, it is no longer sufficient if the adversary corrupts t+ 1 servers during the entire life-
time of the system, but these corruptions need to happen between two re-randomizations,
which can be dynamically adjusted. Advanced schemes also allow sufficiently many servers
to jointly re-construct the share of another server in a privacy friendly way, which is, e.g.,
useful in cases of data loss or if one server goes out of business and gets replaced by
another one.

Efficiency

From a computational point of view, secret sharing schemes are very efficient in the sense
that the sharing and reconstruction algorithms can be executed highly efficiently even for large
amounts of data. However, in the information theoretic sense, the communicational costs of
such a scheme are equivalent to storing n redundant copies of a file when sharing a file; when
reconstructing a file, at least t+ 1 times the size of m needs to be downloaded. This is due to
the fundamental observation that every share needs to be at least as large as the initial data.

151

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Alternatively, when information theoretic security is not required, one can use computationally
private secret sharing schemes, in which case the multiplicative communicational overhead can
be reduced to n

t+1 and 1 for sharing and reconstruction, respectively.

For a detailed overview of the state of the art we refer to Buchmann et al.[102].

B.3.4 Remote Attestation

Remote attestation, as a part of trusted computing, allows for verifying the correctness of the
internal state of a remote device across a network, and ideally for detecting remote software
attacks. For example, software companies can use remote attestation to identify unauthorized
modifications to software, or more generally communicating parties can gain assurance about
the other’s integrity and trustworthiness.

Remote attestation differs from traditional software attestation in the sense that for the latter,
the verifier directly communicates with the prover, with no other hops in between. Yet, in
contrast to secure hardware solutions, no dedicated components are required for remote attes-
tation, making it easier to integrate on low-cost devices. The following description in large parts
follows the approach of Francillon et al. [62, 63].

A remote attestation protocol consists of the following algorithms:

• Setup(1λ): On input the security parameter λ, this algorithm outputs a secret long term
key k.

• Attest(k, s): Taking a key k and the state s of a device, this algorithm outputs an attes-
tation token tok. The generation of tok is deterministic; however, to avoid trivial attacks
when generating the token, the prover’s internal state consists of its actual state and a
nonce provided by the verifier.

• V erify(k, s, tok): This algorithm takes as input a key k, a device state s, and an attes-
tation token tok, this algorithm outputs a single bit indicating whether the attestation
token matches the specified state.

The basic security properties of a remote attestation protocol need to guarantee attestation
unforgeability and completeness. The former requires that a malicious prover (not being able
to compromise the used key) cannot generate an attestation token with is accepted in the
verification algorithm for any state s′ 6= s of its own choice; the latter requires that honest
prover are always able to succeed in the protocol.

The basic definitions of remote attestation do not prevent an adversary from using the correct
state for the attestation procedure, and then replace it by an arbitrarily altered state. Therefore,
the following (minimum) properties need to be satisfied.

Exclusive access. Only Attest must have access to the key k, as otherwise the adversary could
simulate the attestation algorithm for the target state s, while actually using a different
state s′.

152

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

No leaks. Attest does not leak anything about k except for attestation tokens tok. This is
necessary as otherwise it would be possible to construct examples where over the time the
adversary could infer the value of k after many invocations of the attestation algorithm.
This also needs to be addressed in concrete implementation with regards to side-channel
attacks.

Immutabililty. The code of Attest is immutable and directly executed from this immutable
memory. Otherwise, the adversary might be able to replace the code of Attest by a
malicious piece of code between the transfer of the Attest code and its execution.

Uninterruptibility. The execution of Attest cannot be interrupted, as otherwise the adversary
could let a malicious piece of code be attested by replacing the bad parts by correct code
just for the time of the execution of Attest.

Controlled invocation. In order to not skip important parts of Attest, the algorithm must
only be invoked from its intended entry point.

As a conclusion, while remote attestation is intuitively easy to achieve from message authen-
tication codes and related primitives, it has to be noted that their real-world implementation
and realization poses massive challenges to protocol designers and software engineers.

153

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

C Details for Authentication to the Cloud

At the core of CREDENTIAL is the strong authentication component, which will enable secure
authentication to the Cloud. In this respect, Appendix C.1 introduces the details of each au-
thentication framework identified as useful for the CREDENTIAL wallet. Furthermore, in order
to provide a higher level of security assurance, in particular when using soft-type of authentica-
tors and mobile devices, a cluster of underlying technologies is also considered. Appendix C.2
introduces the details of the evaluated underlying technologies.

C.1 Authentication Technologies

In this section, we describe the main architecture, modules and features offered by the evaluated
frameworks. In particular, more details about the authenticators, methods and protocols are
given. Appendix C.1.1 introduces a high-level architecture and specification of both FIDO
UAF and FIDO U2F frameworks. Appendix C.1.2 introduces the details of OATH followed by
Mobile Connect, which is described in Appendix C.1.3. SQRL authentication framework and
its main operations are described in Appendix C.1.4. At the end of this section more details
of biometric authentication is describes. Biometric processes and techniques are highlighted in
order to provide a quick overview on those technologies that could be potentially integrated as
authenticators in most of the introduced frameworks.

C.1.1 FIDO

In July 2012 a non-profit organization called the FIDO (Fast Identity Online) Alliance was
formed. The FIDO Alliance is an industry consortium consisting of more than 200 members.
The FIDO Alliance addresses the user’s problem to remember multiple usernames and passwords
and also the lack of interoperability utilizing strong authentication devices. The main goal of the
FIDO Alliance is to develop specifications, which should help the user to securely authenticate
to online services, basically, to increase security using web applications. These specifications
define a new standard utilized for security devices and browser plugins. FIDO specifications
are designed to protect the user privacy.

The FIDO Alliance has developed two sets of specifications. These two specifications are sepa-
rated into two different user experiences. The first specification describes the passwordless user
experience. This passwordless user experience is based on the Universal Authentication Frame-
work (UAF). The UAF enables the possibility to use alternative authentication methods such
as fingerprint or other biometric authentication methods to allow passwordless authentication
to a web application. Moreover, UAF enables multifactor authorization, which means that it
is possible to combine authentication methods in order to increase security. These combined
authentication methods can be for example fingerprint + PIN.

The second user experience is the second factor user experience, which is defined in the Universal
2nd Factor (U2F) specification. The main idea of U2F is to strengthen the security of online
services by adding a strong second authentication factor to an already existing username and

154

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

password infrastructure. These strong second authentication factors include secure devices such
as a USB dongle. This USB dongle is registered to a specific user and the ownership of this
dongle authenticates the user.

Architectural Overview

FIDO is based on a so-called client-server architecture. In the commercial way the usernames
and passwords have to be stored on the client side as well as on the server. Storing usernames
and passwords on the server brings up security issues such as a user’s credentials getting stolen
by a thief.

FIDO is increasing security with different mechanisms. One example would be that the user’s
passwords no longer have to be stored on the server. Furthermore, utilizing FIDO prevents
against phishing or man-in-the-middle attacks. FIDO consists of an extended server-client
architecture. The extended part is the so-called authenticator.

Figure 10: FIDO Basic Concept

Figure 10 shows the basic concept of FIDO. The first thing that happens if a user tries to log on
a web service is that he or she has to verify his or her identity to the FIDO authenticator. This
verification procedure is supported by various mechanisms such as fingerprint, speech recognition
or by simply username and password. After successfully verifying to the FIDO authenticator
the authentication procedure starts. Next, after a successful authentication procedure the user
is logged onto the web service. To be able to prove the identity of a user and the authenticator
to the server a preliminary step has to be performed. This preliminary step is a binding
between the user and the authenticator and between the authenticator and the server. After
this preliminary step is taken, which is called registration, the server can be sure that the user
and authenticator’s identities are proven.

Process

FIDO works with utilizing protocols with strong public key cryptography mechanisms to in-
crease security for authentication. In order to achieve this level of security, a registration step
has to be performed. A new key pair is generated by the client device in the registration step.
The client device retains the private key and the public key is registered with the web service.
By proving the ownership of the private key, the client device is authenticating to the web ser-
vice. The user has to unlock the private keys stored on the client device before using it. FIDO
supports secure and user-friendly mechanisms to unlock the private keys such as fingerprint
scan, speech recognition or using a second factor device.

155

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Registration: The FIDO registration process is necessary if a user is using a web service
for the first time. Figure 11 illustrates the registration procedure. This procedure starts
with the user selecting one of the FIDO authenticators available on both the web service
and the user device. Next, the user has to unlock the FIDO authenticator with one of the
available unlock mechanisms such as the fingerprint reader. After successfully unlocking
the authenticator, the user device generates a new public-private key pair for the user
device, the web service and also for the user account. The private key is stored on the
device and will never leave it. The public key is sent to the web service so that the user
account is associated with this key. This registration procedure only has to be performed
by using a new web service the first time. Following this step, the user is able to use the
authenticator to authenticate at the service.

Figure 11: FIDO Registration [57]

• Login: A user can log into a web service using a previously registered device. The login
procedure is shown in Figure 12. It starts with unlocking the FIDO authenticator. The
unlock mechanism has to be the same as at the registration procedure. The device selects
the corresponding key related to the user and the web service. Next, the web service is
asking the device to sign a challenge. The challenge is signed by the client device with the
correct key. After signing, the challenge is sent back to the web service. The following
step will be that the user is successfully logged onto the web service.

156

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 12: FIDO Login [57]

Universal Authentication Framework (UAF)

The UAF specification focuses on the passwordless user experience. Moreover, it has been
developed to define open, scalable and interoperable mechanisms to securely authenticate user
to web services. Besides the passwordless authentication, UAF also offers multifactor security
such as fingerprint + PIN.

Figure 13 describes the FIDO UAF architecture from a high level view. Moreover, it also
describes the interaction of and between the components. Each component is described in the
subsequent sections.

Figure 13: FIDO UAF High-Level Architecture View [56]

157

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The FIDO client is a part of the user device and is responsible for the interaction with the
FIDO authenticators utilizing the FIDO authentication abstraction layer via API. The client
also interacts with the so-called agent which can for example be the app or the browser. It uses
agent-specific interfaces to communicate with the FIDO server. The FIDO client is designed to
be implemented on various operating systems and web browsers on various systems.

The FIDO UAF server is responsible for the interaction with the web sever of the relying
party. The web server is utilized for the communication to the FIDO client via the device agent
on the user’s device. Another important responsibility of the FIDO server is to manage the
association between registered authenticators and user accounts. Moreover, it is also responsible
for validating the user’s authentication and transaction confirmation responses.

The FIDO protocols are utilized to carry messages between the user’s device and relying
party. FIDO protocol messages are used for the authenticator registration, user authentication,
secure transaction confirmation and authenticator deregistration.

The FIDO Authenticator is able to create key material related to the relying party. The
authenticator is located on the user’s device or it is connected to it. This FIDO authenticator is a
secure entity that interacts with the FIDO authenticator abstraction layer which provides
a uniform API. This API enables the use of authenticator based cryptographic mechanisms and
operations.

Universal Second Factor (U2F)

FIDO U2F aims strong authentication on the web while preserving the user’s privacy. U2F
utilizes the so-called U2F devices as second factor which are carried by the user. The user
has to register the U2F device so that the device is linked to his account and to create a new
public-private key pair. The user can use this U2F device as second factor when authenticating
to a web service. The basic idea from U2F is to make the authentication of already existing
web services stronger. This idea should be realized by adding a strong second factor to the
existing authentication infrastructure. In fact, the U2F device mentioned earlier constitutes as
this strong second factor. A few examples of U2F devices are USB devices, standalone NFC
devices or standalone Bluetooth devices. After successfully registering a U2F device, the user
is able to use this device as a second authentication factor. Both the registration as well as the
authentication are exposed through JavaScript APIs on the browser side and native APIs on
the mobile operating system side.

C.1.2 Initiative for Open AuTHentication (OATH)

The OATH specification [97] intends to provide strong authentication by leveraging open stan-
dards. OATH framework supports several authentication methods in multiple devices such as,
mobile phones. OATH has been designed to support high level of interoperability it facilitates
the integration of open, scalable and interoperable mechanisms to securely authenticate user to
web services. A high level architecture is depicted in Figure 14

158

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 14: OATH high level architecture [97]

Client Framework

The flexible client framework enables standard-based integration of multiple forms of strong
authentication to authenticate users and devices. It supports a wide range of authentication
methods (Biometric, certificate, OTP, Transaction signing), standalone and embedded tokens
(e.g. smart card, SIM card, TPM) and it communicates using standard authentication protocols
(e.g. SSL/TLS, WS-Security, EAP-*).

Authenticators

Different levels of assurance can be provided during the authentication process. OATH supports
hardware- and software- based authenticators to confirm that the user is who he/she claims to
be. Soft-based authenticators can be implemented on multiple devices (e.g. smart card), which
enable the combination of multiple authentication methods in a single authenticator or token.

Protocols

In order to exchange authentication data between the client and the server, over-the-wire au-
thentication protocols are implemented. The OATH reference architecture considers existing
standard protocols (e.g. EAP, SSL/TLS, Kerberos, WS-Security) and each of them support
one or more authentication methods.

Server Framework

The server framework consists of the following modules

• Provisioning and management framework: responsible of accommodating secure and reli-
able delivery of software modules and security credentials to any client device.

159

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Validation framework: validates authentication credentials and communicates contextual
information to the risk evaluation framework.

• Applications: The application receives user’s credentials and communicates with the val-
idation module.

• Authorization: Once user has been authenticated, the authorization modules is responsible
of granting/denying access to a certain resource (based on applicable access policy).

• User store: Stores all user and profile information.

• Policy store: Stores all policies by component or in a common stored, depending on the
model used.

• Audit store: a central repository for all audit and operational events.

• Authentication and Identity sharing: implements technology primitives to enable sharing
of authentication of identity information.

• Risk evaluation and sharing: determines the risk associated to a particular transaction.

C.1.3 Mobile Connect

The Groupe Speciale Mobile (GSM) was created in 1982 by the Confederation of European
Posts and Telecommunications (CEPT) to design a pan-European mobile technology. In 1995
on the foundation of the GSM the GSM Association was formed. This organization represents
the interests of almost 800 mobile operators across the world and related companies. GSMA
supports the standardization, implementation and promotion of Global System for Mobile Com-
munication GSM.

Due to the fast growth of the digital economy and the increasingly development of digital identity
services the GSMA have developed the Personal Data Programme based on the GSMA Mobile
Identity Programme with the aim to help digital service providers and consumers assuring
privacy and security.

The GSMA Personal Data has developed the Mobile Connect, a new standard in digital au-
thentication. It is a universal log-in solution that uses the security of the mobile devices and
requires user permission for sharing personal information, protecting user privacy. Mobile Con-
nect associates the mobile phone with the user allowing authentication with different levels of
security, in this way remembering usernames and passwords are not needed, they are replaced
by a mobile number and access to the mobile device.

Mobile Connect is an identity service based on the OpendID Connect & OAuth2 standards.
Mobile Connect is offered by mobile network operators and delivered thanks to a standardised
technical interface.

The user authentication is provided by the mobile user operator. For this purpose, Mobile
Connect is using two APIs:

160

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• The API Exchange provides the Discovery API that allows identifying the end user’s
mobile operator and whether Mobile Connect is available for that network, also providing
the URLs for the Mobile Connect service associated to the end user’s network.
Figure 15 displays how API Exchange is working and the steps are described next.

1. The SP application calls Discovery API to look for the operator the user is associated.
Operator details are returned.

2. The SP application calls user’s operator.

Figure 15: API Exchange Flow

• The Mobile Connect API is an OpenID Connect API that allows the use of Mobile Connect
user account to authenticate a user.

Both APIs are RESTful API with JSON responses.

Due to the SPs could need several Levels of Assurance (LoA) during the authentication process;
the Mobile Connect API provides different secure ways to confirm that the user is who they
claim to be. The mobile operators use authenticators to make this. There are different types
of authenticators which provide different LoA as follows:

1. Seamless Authentication: authentication is automatically performed by the operator when
the user is connected through the operator network;

2. SMS+URL authenticator is an SMS sent to the user’s device with a unique one-time only
URL that the user selects to prove that they are in possession of the device and have
access to the SMS;

161

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

3. USSD (Unstructured Supplementary Service Data) is a protocol used by mobile networks
to communicate with a terminal (mobile device). The operator will push a message to
the terminal and can require a response. The user’s device will display a message such as
"Press 1 for OK. Press 2 for Not OK". If a user has access to the mobile device and is
able to respond (correctly) to it, they will be authenticated;

4. SIM Applet authenticator is an application that is stored within the SIM card and run
on the mobile phone. When an authentication request occurs, a binary SMS will be sent
to trigger the SIM applet. Once triggered, it will prompt the user for an input such as
“Press OK to continue” or "Please enter your PIN". The SIM Applet will send a response
back to the operator to validate the user;

5. Smartphone Application authenticator is a native application that allows the end user to
manage their verification.

It is worth to mention that the LoA the SP requires and the user can use is dependent on the
authenticator implementations the mobile operator supports, e.g. some mobile operators can-
not support biometric factors such as fingerprint, as a second factor authentication. Once the
authentication is performed the Mobile Connect uses a unique identifier called PCR (Pseudony-
mous Customer Reference) to reference a specific end user. The PCR ensures the user’s privacy
protection and guarantees this PCR represents an actual end user. The PCR will be same for
each authentication request. The use of PCR as the key identifier easier the integration with
existing accounts systems, mapping the PCR identifier to the existing user-id.

Mobile Connect Login

As Figure 16 shows, the user could use Mobile Connect in order to get access to protected
resources, provided by a SP, using mobile device instead of user and password as credentials.

Once the user clicks on the Mobile Connect button asking the service (step 1), the SP will use
the Discovery service for identify the end user’s operator (step 2). Discovery service will try
to retrieve Operator details such as Mobile Connect API address. If this is not possible the
Discovery service will use an Operator User Interface where the user will be asked to enter their
mobile phone number.

The information retrieved will be returned in the Discovery response (step 3), and will be
used to create and send the Mobile Connect authentication request to the user’s operator (step
4). Depending on the Level of Assurance required by the Service Provider an appropriate
Authenticator will be used by the Authentication Service. Then the user will be asked through
his/her mobile to act in order to perform the authentication (step 5).

After the user have completed the action proving he/she possess the mobile device (step 6), an
authentication response is sent to the SP (step 7). This response contains the PCR unique for
the end user. At this moment the user is granted to access the requested resource (step 8). In
order to do so, the user must be connected to mobile network either on their operator’s network
or not.

162

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 16: Use of Mobile Connect by the User

Basically Figure 17 depicts the login process where the Discovery service and the Authentication
service from the mobile operator are involved.

Figure 17: Mobile Connect Login

163

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Mobile Connect Privacy

Mobile Connect service, through the privacy principles agreed by the members of the GSMA, is
committed to protect the user privacy, developing security practices and assuring the security
of their data.

C.1.4 Secure Quick Reliable Login (SQRL)

SQRL [69] is a draft open standard for secure website login and authentication proposed by
Steve Gibson of Gibson Research Corporation in October 2013 as a way to simplify the process
of Authentication protocol, without revealing any information about the transaction to a third
party. SQRL standard provides a passwordless anonymous identification and authentication
framework based on cryptographic challenges, asymmetric key schemes, standard URL schemes
and QR codes.

Specification

SQRL basically works by presenting, in a server login page a cryptographic URL challenge that
must be processed by a client application (a mobile application or a browser extension). When
processing a challenge URL, the client application must generate, from a master key, a site-
specific public key pair. With the private key part, the application signs the URL (excluding the
protocol). The final step involves making a POST request to the aforementioned URL with the
public key and the generated signature. In the server side, the server, using the POST URL, the
public key and the signature, can easily verify that everything matches. As long as the master
key remains the same, the server can subsequently send challenges and receive responses that
will always correspond to the same identity key. The main benefits of this approach are that
the user has no longer to manage site-specific passwords and that the server side knows nothing
about the identity of the person accessing the service (anonymity).

Figure 18: SQRL Working Principle

Registration and authentication: The SQLR registration process is necessary if a user is
using a web service for the first time. Figure 19 illustrates the registration procedure. This pro-
cedure starts with the user trying to access a service without a previous session. The service will
present a QR Image (containing the challenge URL) and an anchor element linking to the afore-
mentioned challenge URL and using a special protocol (e.g. sqrl://www.example.com/sqrl?...).

164

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The main objective of using a special protocol is that such URLs can be automatically captured
by SQRL specific applications or extensions and automatically handle the authentication logic.
The registration and authentication protocols are the same. The only difference is that at the
server side, the SQRL server will check if the public key has already been used (authentication).
If so, the server will recover information associated to such user, if not, it will register the user
as new.

Figure 19: SQRL Registration and Authentication

Key Management: In previous sections the algorithm has been simplified in order to avoid
cryptographic underlying techniques to obscure the main concepts behind the framework. The
main issue that can rise with the previous description is that “what happens if the master
key is lost?” The answer to this question is dealt in the full specification with the “ID Lock
mechanism”: which is based in creating a second “master key” (Identity Unlock Key) different
from SQRL’s regular identity master key. This Identity Unlock Key must be never stored in a
SQRL client (it can be printed onto paper as a graphic QR code or exported as a short text file
and stored securely). The only way a website can accept a new identity for some user is by the
presence of a “identity unlock key” which will allow users to remove their previous identity so,
even with full access to the old master key, attackers will no longer be able to impersonate them
There are other issues such as how the master keys are protected within the devices that are
not covered within the specification as they have to be dealt at the implementation level given
the high dependency with OS or HW features. Figure 20 depicts the flow and interconnectivity
of cryptographic keying information within a SQRL client. There, EnHash is essentially sixteen
(16) chained iterations of SHA-256[16] EnScrypt is essentially a number of chained iterations
of Scrypt[17]. The exact number of iterations is determined by an execution time which is a
parameter to the function.

165

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 20: SQRL Client-Side Key Management [68]

C.1.5 Biometrics

Common authentication methods either based on what you know, or what you have involve
properties that can be forgotten, lost, stolen or eventually disclosed; and furthermore, do not
authenticate the user as such. Contrary to this, biometric authentication, which is based on
what you are, allows users to be authenticated by referring to those physiological or behavioral
characteristics that are uniquely associated to them, and presumed to be neither replicable nor
transferable. Therefore, biometric authentication promises to severely enhance the security of
authentication systems. Biometric systems aimed at verifying the identity of individuals (au-
thentication) basically carry out three processes: i) enrollment, ii) storage, and iii) verification.

1. The enrollment process is the initial step. It collects user’s biometric sample (e.g., finger-
print), which requires user’s interaction. Ideally it is performed only once; however, most
systems require the collection of several samples. Once the collection of samples is done, a
feature extractor algorithm analyzes the sample, extracts and measures specific biometric
features (e.g., fingerprint minutiae).

166

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

2. The storage process is performed at the user registration phase. It consists in storing
recently extracted features (i.e. biometric template) locally or remotely; and additional
information, which allows the authentication system to associate a biometric template to
an individual.

3. The verification process is performed on each authentication attempt. It takes a new
sample of the biometric data, and provides a comparison between the new sample and
the one stored during enrollment. Unlike conventional authentication methods, biometric
systems provide a percentage of similarity between samples, i.e. an individual’s identity
is confirmed only if the resulting percentage is above a predefined threshold.

Techniques

Biometric authentication techniques are classified by the type of characteristics evaluated:
physiological attributes or behavioral singularities. The leading biometric techniques used in
inherence-based authentication are those briefly introduced next. Physiological biometrics

Physiological Biometrics: It consists of measurements taken from data obtained as part of
the human body. This category includes:

• Fingerprints: it identifies the lines convergence points (minutiae matching).
• Facial recognition: it captures a sequence of images, and extracts features from the
images ensemble
• Hand geometry: it extracts hand features, such as shape, appearance, length and
perimeters of fingers.
• Iris recognition: it identifies the location, shape and size of random patterns in the
external iris of the eye; it transforms the iris rim into a rectangular shape texture.
• Retinal identification: it maps the blood vessels in the back of the eye.

Behavioral Biometrics: It consists of measurements taken from user’s actions, some of them
indirectly measured from the human body, e.g., voice recognition. Techniques within this
category include:

• Voice recognition: it analyses power and spectral samples of the speech, building a
statistical pattern from them.
• Keystroke dynamics: it identifies user’s typing pattern. It measures and compares
the series of user specific timing events also known as “typing signature”. Samples
could be taken either from conventional keyboards or from touch screens (key tap
dynamics).
• Handwritten signature: it uses a digital version of the signature. Modern sensors can
also measure pen position, pressure and inclination in a three-dimensional way.

167

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

C.2 Underlying Technologies for Authentication

As algorithms based on software-only solutions are always vulnerable by malicious applications
implant by potential attackers, further technologies are necessary in order to mitigate this
attack vector. Those technologies make use of non-manipulable cryptographic hardware tokens
representing a root of trust. In this context, two technologies are broadly used in the field
nowadays: Trusted Platform Modules (TPMs) and Trusted Execution Environments (TEEs).
While TPMs only support a very limited set of operations, TEEs are more flexible. The following
sections investigate those technologies in more detail and explore the availability on android
devices on the other hand.

C.2.1 TPM

TPMs are independent pieces of hardware which tackle security requirements by providing a
hardware based root of trust. This includes key storage or key generation in a secure and trusted
manner, but also user authentication or a secure random generator. Another important aspect
of a TPM is the monitoring of the secure boot process. Usually, the TPM is implemented in a
chip or microcontroller that is physically separated from the remaining hardware. Standardized
by Trusted Computing Group (TCG), TPMs are used in a variety of domains. A lot of today’s
PCs and laptop are making use of TPMs to gain security. According to TCG over 100 million
PCs and laptops were sold with incorporated TPMs in 2007.

A set of components of a TPM version 1.2 can be seen in Figure 21.

Figure 21: Components of the TPM 1.2 [78]

With TPM version 2.0, TCG specified five different implementations for the TPM (all of the
following specified in [77]). This was done because of the increasing need for security in embed-

168

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

ded system. Version 2.0 is a more flexible approach, in order to provide security features also
in systems were it may not be feasible (because of space or cost) or not necessary to provide
maximum security with a separate microchip.

Discrete TPM: Provides the highest level of security but is also the most expensive imple-
mentation. A discrete chip is built in the device (hardware based).

Integrated TPM: Is still hardware based but the TPM is integrated into another chip which
purpose is not solely security. This level is not tamper-resistance, making it less secure
than the discrete TPM.

Firmware TPM: The TPM is executed in a trusted execution environment (TEE). It is not
required to use an own, isolated chip for this level of the TPM. Resources for the TPM,
like keys, remain in the TEE. The drawback of this method is that the TPM must rely
on other implementations providing security.

Software TPM: Basically just a software emulator of the TPM. This TPM provides the low-
est level of security. It is vulnerable to any software bug in the operating system and
tampering. The main application of a software TPM is for testing and building a proto-
type.

Virtual TPM: Cloud environments (for example “Internet of Things”) may also use this TPM.
The virtual TPM provides the same security features as a physical TPM would do, but
the TPM is shared between multiple virtual machines and relies on a hypervisor.

The main advantage of TPMs is that it protects the device from external software attacks.
Without proper authorization it is nearly impossible to access protected data. TCG also created
a specification for mobile architectures, in order to address the vulnerability of such mobile
devices, namely the “Mobile Trusted Module” (TPM Mobile).

Android devices mostly utilize the TEE. Most chip manufacturers make use of the “ARM
TrustZone”. It may be possible for the TPM to run within a TEE as a “Trusted Application”.
This would result in a firmware TPM.

TPMs are heavily used in windows phones.

C.2.2 TEE

A “Trusted Execution Environment” is an execution environment which runs parallel to a
rich operating system (OS), like Android. This is usually achieved through virtualization of
the main processor thus creating two environments, a rich environment where the rich OS
performs its tasks and another trusted, isolated environment, the TEE. The specification for
the TEE is developed by GlobalPlatform. The most prominent implementation of the TEE is
the “TrustZone” (ARM).

The TEE was designed for the growing market of connected devices including but not limited
to mobile phones. Drawbacks of the increasing usage of smart devices is its expanding attack

169

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

surface hence the need for security in this area. The main motivation for the creation of an
open standard was to addresses this problem.

As mentioned earlier, the TEE is an execution environment which allows the execution of trusted
code. During the secure boot process, the TEE is authenticated and isolated. This step builds
the necessary root of trust. Trusted code which is executed within the isolated environment
is called “Trusted Application” (TA). These applications have a higher level of security than
applications which run in the rich environment and offer some functionality to the rich OS. The
two levels of security are realized by the TEE by preventing access from the rich environment
to the hard- and software resources of the TEE. Such resources could for example be a secure
key storage implemented in hardware or a so-called “Secure Element” (SE). Furthermore, the
TAs gain access to the internal APIs of the TEE [146].

It is only possible for the rich OS to communicate with the TEE via well-defined channels.
TAs within the TEE are also isolated from each other and it is not possible for a TA to gain
unauthorized access to any data used by another TA. The basic architecture of a TEE, including
TAs and the rich environment can be seen in Figure 22.

Figure 22: Architecture of the TEE [146]

With version 4.3 (API level 18) Android improved its security framework by introducing the
possibility for hardware-backed keys. Android introduced a new Java Security Provider, namely
the “AndroidKeyStore” provider, which offers an interface to generate and save keys in secure
hardware. Once the key resides in secure hardware it remains non exportable. Also the Android
OS has no read-access to the key hence the key is bound to the device. This also applies for
rooted devices. On non-rooted devices a created key can only be used by the application

170

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

which created the key (identified with the UID), but it may be possible for rooted devices
to circumvent this security feature. The Android KeyStore framework was further enhanced
with Android version 6.0 (API level 23). As things stand at the moment (December 2016),
according to Android Studio, 76.9% of all Android Devices support API level 18 or higher.
Anyhow, if the device doesn’t support hardware-backed keys, for example if the device lacks
the necessary hardware, the KeyStore API defaults to a software solution. Furthermore, the
“AndroidKeyStore” provider only supports a predefined set of cryptographic algorithms. This
set is not extensible.

The security of Android devices (KeyStore API) usually relies on the TEE. Most chip man-
ufacturers for Android are integrating a TEE in modern Android devices, namely the “ARM
TrustZone”. This includes Qualcomm (market leader), Texas Instruments and Samsung. The
TrustZone is a TEE which introduces two “worlds” that run in parallel, a “secure world” and a
“normal” world. As the names imply, the normal world is where the rich OS, Android in this
case, resides (thus non-secure) and in the secure world trusted code is executed.

Nevertheless, it is not guaranteed that the TrustZone or any other TEE is implemented in
an arbitrary Android device. It is also possible that an Android phone is shipped with no
form of TEE incorporated. Anyhow, most middle- to high-end Android phones are using the
TrustZone.

171

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

D Details for Identity and Access Management Protocols

In the following sections, we provide details for the identity and access management technologies,
which were evaluated and assessed in Section 6. First, Appendix D.1 provides details on the
identity protocols OpenID Connect and SAML. Then, Appendix D.2 further describes the
authorization protocols OAuth, UMA, and WS-Trust. Appendix D.3 explains policy languages,
namely WS-Policy and XACML. Subsequently, Appendix D.4 presents the W3C Web Crypto
API and KMIP. Finally, Appendix D.5 details SCIM.

D.1 Identity Protocols

This section completes the fact sheets of OpenID Connect and SAML from Section 6.1.1.

D.1.1 OpenID Connect

OpenID Connect [154] is an identity protocol on top of OAuth 2.0 [84], which allows service
providers (SP) to delegate user authentication to an identity provider (IdP), to obtain data
about the user, and to gain authorization to access additional resources. As a result of this
process the identity provider issues JSONWeb Tokens (JWT) to the service provider, containing
identity and attribute information. By offering these data as JWT, confidentiality, integrity and
authenticity can be ensured. By delegating the authentication to the user’s preferred identity
provider, usability improvements can be achieved. The user only has to memorize one set of
credentials for her identity provider instead of sets for each service. Furthermore, with single
sign-on (SSO), information about the user’s recent authentication is stored and can be reused
to complete a subsequent authentication request without requiring user interaction. OpenID
Connect supports server-side and client-side web applications as well as mobile apps. Extensions
for OpenID Connect also include the automatic discovery of a user’s identity provider, dynamic
registration of new service providers, and session management.

This section is organized as follows: To begin with, the general authentication process and the
involved steps are described. The subsequent paragraphs explain the optional extensions for
discovery, dynamic registration, and, finally, session management.

Authentication Process

The authentication process of OpenID Connect involves interaction between user, service and
identity provider. In order to access a protected resource at the service provider, the user first
has to authenticate via the identity provider. Then, the proof of authentication, the user’s
attributes, as well as authorization to access further resources have to be transmitted back to
the service provider. The service provider can use this information to request further data about
the user and, ultimately, reach an access control decision regarding the user’s original request.
Figure 23 illustrates the steps of the OpenID Connect process for the so called authorization
code flow. These following paragraphs elaborate on these steps.

172

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 23: Authentication with OpenID Connect

1. Request Protected Resource: When a user tries to access a protected resource at the
service provider, this service provider has to make an authorization decision based on the
user’s authenticated identity or her attributes. With OpenID Connect, this process of
user authentication and attribute acquisition can be delegated to an identity provider. In
order to perform such a delegation, the service and identity provider have to be associated,
which can be established with extensions for discovery and dynamic registration.

2. Authenticate at Identity Provider: The service provider redirects the user’s browser
to the identity provider with a request for authentication and a list of required permis-
sions. The authentication is performed out of band at the identity provider, which allows
the integration of a multitude of authentication methods. The resulting proof of authenti-
cation and required attributes are compiled into an id-token. In addition, an access-token
representing authorization to access further resources at the identity provider is generated.

173

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

3. Retrieve Tokens: There are three methods, called flows, that define how these id- and
access-tokens can be transmitted back to the service provider. Firstly, in the authorization
code flow, the identity provider redirects the user’s browser to the service provider. The
authentication code is added as GET parameter to the destination URL pointing at the
service provider, which then exchanges this code for tokens. This authorization code flow
is illustrated in Figure 23. Secondly, in the implicit flow, the id-token and access-token
are sent directly back to the service provider again as parameter in a redirect. Thirdly, in
hybrid flows, one token is sent back directly, whereas the other token has to be obtained
by exchanging the authorization code.

4. Request Further Data: In some scenarios, the service provider requires further data
associated with the user. To access these data, the user has to prove her previously
obtained authorization. Of particular interest regarding the OpenID Connect process are
the OAuth 2.0 Bearer Token [108] specification as well as the JSON Web Token profile for
OAuth 2.0 [107]. According to the OAuth 2.0 Bearer Token specification, the access-token
can be included in the request to demonstrate authorization. Figure 23 illustrates this
Bearer Token usage. In the JSON Web Token profile for OAuth 2.0, authorization can be
demonstrated with JWT tokens, such as the id-token.

5. Conclusion of the User’s Request: After the service provider’s requirements have
been fulfilled, the initial request by the user for a protected resource can be fulfilled. The
authenticity of the user and her attributes have been presented by the obtained id-token.
In addition, the service provider was able to request further services offered by the identity
provider.

Discovery Process

The discovery extension of the OpenID Connect specification allows to determine the user’s
preferred identity provider and its configuration. This discovery process is based on usernames
that reference hosts. By querying such a specified host, the service provider learns the URL
of the user’s preferred identity provider. With this URL, the service provider is able to obtain
the identity provider’s configuration. The following lines describe the individual steps of the
discovery process, as illustrated in Figure 24.

1. Obtain Username: In order to perform the authentication process triggered by the user’s
attempt to access a protected resource, the service provider first has to obtain the user-
name. Therefore, the service provider presents the user a form asking for her username.
Valid usernames follow schemes that include a hostname, such as joe@example.com:8080
or https://example.com/joe.

2. Discover User’s Identity Provider: The service provider sends a WebFinger [110]
request to the host extracted from the username in order to determine the user’s pre-
ferred identity provider. This request is sent to a standardized endpoint and contains the
username. Based on this information, the WebFinger service responds with a URL to the
user’s preferred identity provider.

174

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 24: Discovery of Identity Providers with OpenID Connect

3. Retrieve Identity Provider’s Configuration: In the final step, the service provider
retrieves the identity provider’s configuration. The previously obtained URL specifies the
identity provider’s host. A request to a standardized path at this host returns configu-
ration data, such as necessary endpoints, supported cryptographic algorithms, and the
locations of key material.

Dynamic Registration Process

The OpenID Connect extension for dynamic registration allows to establish an association be-
tween service providers and identity providers. During this process the service provider presents
information about itself to the identity provider and in turn obtains information required to use
the identity provider. The exchanged information includes supported optional functionality as
well as cryptographic algorithms and key material. As illustrated in Figure 25, the extension
for dynamic registration specifies two steps, which are described in further detail below.

1. Register Service Provider at Identity Provider: In order to register, the service
provider sends information about its configuration to the identity provider. Additionally,

175

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 25: Registration of Service Providers with OpenID Connect

based on the previously obtained identity provider’s configuration, the service provider
is able to select supported cryptographic algorithms. The identity provider takes these
options into account, but ultimately defines which methods are used. As a result, the
service provider receives a document specifying the parameters of the association, as well
as a registration access token, which can be used to obtain the registration information
at a later point in time.

2. Read Registration Information: With the previously obtained registration access
token, the service provider is able to get a new copy of the registration information.

Session Management

Even though identity and service provider maintain their own sessions, an overarching concept of
session management allows to coordinate these sessions. The identity provider might offer a long-
term single sign-on session, which is opened when the user first authenticates, in order to skip
the need for user interaction during immediate further requests. Service providers typically open
a session after receiving and verifying the id-token issued by the identity provider. However, the
service provider’s session is derived from the identity provider’s session, which exists because
of the user’s actual authentication. Therefore, identity and service provider have reason to
coordinate their sessions.

The issues regarding session management and coordination were considered in further specifi-
cations for OpenID Connect. OpenID Connect Session Management [48] defines how iframes

176

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

can communicate through HTML5 Cross-Document Messaging [85], in order to check the cur-
rent session state and track changes. In addition, specifications for front-channel [104] and
back-channel [105] logout propose ways to close the identity and service provider’s session si-
multaneously, indirectly via the user agent or, respectively, directly between identity and service
provider.

D.1.2 SAML

Security Assertion Markup Language (SAML) is an XML-based framework for communicating
user authentication and attribute information developed by Security Services Technical Com-
mittee of OASIS [83]. In this document we refer to the latest version of SAML, version 2.0,
which was released in 2005.

SAML has been developed to solve difficulties in the authentication and authorization proce-
dure. Moreover, it has been developed for use cases such as Single Sign-On (SSO), authorization
service and back office transaction. The way these use cases are realized is based on a stan-
dard message format (XML), a standard message exchange protocol and rules for the message
transport. This standards and rules are increasing the interoperability.

Figure 26 shows the typical usage of an authentication procedure utilizing SAML. In the
scenario of the basic concept is a user trying to access a service. This service is provided by
the so-called Service Provider (SP), which can provide different kinds of services. The first step
the SP takes after receiving the access request from the user, is verifying if the user is already
authenticated or not. In this scenario we assume that the user hasn’t been authenticated yet.
In this case the SP is trying to identify the user’s Identity Provider (IdP). An IdP is an entity
which is able to authenticate and authorize the user. Next, the SP requests a user authentication
from the identity provider. At this point, the identity provider is trying to authenticate and
authorize the user. If this procedure is successful, a token will be created with information
about the user, including authentication and authorization information related to the specific
user. The SP gets the token from the IdP. The two providers in this scenario know and trust
each other. Therefore, the service provider can use the SAML token created by the identity
provider to allow or deny the user access to the requested service.

The advantage towards utilizing SAML is having the possibility to create tokens for different
services on the same service provider as well as having the possibility to authenticate the user
from other service providers. This means that we have a centralized place, the identity provider,
for authentication and authorization of users. Another advantage is that the service provider
does not have to care about how to authenticate the user, such as storing the user’s username,
password and other additional information.

One of the main reasons for using SAML is the usage of Single Sign-On (SSO). The SSO
principle enables the user to only sign in once to gain access to more than one application for
a predefined period of time. SSO is enabled by using for example a cookie in the web browser
which identifies the sign on session.

177

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 26: SAML Basic Concept

Available SAML open source implementations are listed on the OASIS 9 website. These
implementations are available in different programming languages not to mention different com-
binations with other protocols or software tools such as a GUI.

Specification

The SAML architecture is split into various components which are shown in Figure 27. Putting
these components together allows SAML the support of several use cases. Each component is
described in detail in the following.

Assertions: Assertions are one of the core parts in SAML which can enclose several state-
ments such as properties and attributes of a subject. Assertions, issued by the identity
provider, are used for access decisions from the service provider. The assertion structure
and content is defined by an XML schema. The three possible statements enclosed in the
assertion are detailed below.

• Authentication Statements: This statement is typically created by an entity such
as an identity provider, which is in charge of the user’s authentication information.

9http://saml.xml.org/wiki/saml-open-source-implementations

178

http://saml.xml.org/wiki/saml-open-source-implementations

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 27: SAML’s Main Components [133]

The authentication statement is part of an assertion which is created after a user has
successfully been authenticated.
• Attribute Statements: Attribute statements contain properties and attributes
used for defining access control to an application. The specified subject is related to
the identifying attributes and properties.
• Authorization Decision Statements: Authorization statements have been devel-
oped for authorization. The authorization refers to whether a user is permitted to
access a service.

Protocols: The SAML protocols define the structure of SAML request messages and SAML
response messages. Assertions are either requested from the service provider or are pushed
from the identity provider and exchanged using various SAML protocols. SAML defines
a number of protocols such as the following:

• Authentication Request Protocol: This protocol defines an authentication re-
quest message that triggers a response message which contains one or more assertions.
Typically, the issuer of the authentication request is the SP and the response is issued
by the IdP.
• Single Logout Protocol: This is a mechanism to log out of active sessions which
can be triggered by a session time out, the user, the IdP or the SP.
• Assertion Query and Request Protocol: This protocol defines a set of queries
which can either be based on a reference, subject or the statement type.
• Artifact Resolution Protocol: The Artifact Resolution Protocol provides a mech-

anism which is used to refer to an assertion by an artifact. This artifact is typically
used by the service provider to obtain the actual assertion using this protocol.

179

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Name Identifier Management Protocol: The issuer of a name identifier request
can be both the service provider and the identity provider. The protocol provides a
mechanism to terminate an association of a name between the IdP and SP.
• Name Identifier Mapping Protocol: This protocol provides a mechanism to

enable “account linking”. Account linking can be used in browser based SSO where
a user maintains separate accounts.

Bindings: The concept of the SAML protocol bindings describes mappings of request-response
message exchanges to communication and standard messaging protocols. A so-called
SAML binding is for example a mapping of SAML request-response message exchanges
into a specific communication protocol. The possible SAML bindings are listed and de-
tailed as follows:

• SAML SOAP Binding: Simple Object Access Protocol (SOAP) is a network
protocol which allows a decentralized exchanging of structured information in a dis-
tributed environment. SOAP is based on XML technology and follows two main
principles which are simplicity and extensibility. This binding defines how SOAP is
used to send and receive SAML requests and responses.
• Reverse SOAP (PAOS) Binding: In the PAOS binding, the HTTP requester
acts like a SOAP responder or SOAP intermediary which is able to process SOAP
messages which contain SAML messages.
• HTTP Redirect Binding: This binding describes a mechanism where SAML
protocol messages can be sent within URL parameters.
• HTTP Post Binding: The HTTP POST binding is utilized for more complex
SAML protocol messages. This is necessary for long messages because even when
the URL length is theoretically infinite, in practice it is limited. Therefore, the
messages are transferred base64-encoded within a HTTP POST.
• HTTP Artifact Binding: In this binding, the SAML requests, responses or both
are transmitted by reference which is the so-called artifact. This binding can be
composed with the HTTP redirect binding or the HTTP POST binding.
• SAML URI Binding: The SAML URI binding is used to support encapsulation
of a SAML assertion request message with a single assertion reference utilizing one
unique resource identifier (URI). This is based on the principle that URIs are referring
to a resource in a protocol independent way.

Profiles: SAML Profiles basically describe a formulation on how SAML assertions, protocols
and bindings are combined. Moreover, a SAML profile defines extensions and constrains
of the usage of SAML for a specific application. Possible SAML profiles are listed as
follows:

• Web Browser SSO Profile
• Enhanced Client and Proxy (ECP) Profile
• Identity Provider Discovery Profile

180

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Single Logout Profile
• Name Identifier Management Profile
• Artifact Resolution Profile
• Assertion Query/Request Profile
• Name Identifier Mapping Profile

SAML profiles support two general message flows in relation to where the message flow
was initiated. The former and more common scenario is shown in Figure 26 and the latter
scenario is shown in Figure 28.

Figure 28: Identity Provider Initiated Login

SAML metadata defines a specification of an extensible metadata format utilized in a stan-
dardized way by SAML system entities. Metadata may contain URLs, supported SAML profiles,
unique identifiers such as the provider ID or associated digital certificates.

Privacy in SAML

SAML is often deployed in cases where privacy is very important. It supports various mecha-
nisms which enables the deployment in a privacy preserving way.

• Pseudonyms are used in SAML which are ascertained by a particular identity provider
and a service provider.

• SAML supports ephemeral one-time identifiers which ensures that the service provider is
unable to recognize a certain user access utilizing a single sign-on operation.

181

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• The authentication context mechanisms provided by SAML allow the user to be authen-
ticated at a sufficient assurance level.

Security in SAML

SAML defines various security mechanisms to detect and protect against attacks such as the
“man-in-the-middle” attack. The primary mechanism is a pre-existing trust relationship be-
tween the relying party and the asserting party. This trust relationship is typically related to
a Public Key Infrastructure (PKI) whose usage is not mandatory in SAML but highly recom-
mended. Previously mentioned security mechanisms utilized in SAML would include TLS 1.0
or SSL 3.0 for transport level security. As for the message level security, different techniques
are utilized such as XML signature (XMLDsig) or XML encryption.

D.2 Authorization Protocols

This section completes the fact sheets of OAuth, UMA, and WS-Trust from Section 6.1.1.

D.2.1 OAuth

OAuth [84] is a standardized protocol that is used to authorize a third-party application to
access a web service in the name of a user. OAuth operates in the web environment. For
example, by using OAuth a user grants an application access to the user’s files, which reside on
a cloud storage provider. This section describes the version 1.0 of OAuth. Figure 29 shows the
OAuth authentication process. The following paragraphs describe this process in more detail.

The OAuth authorization process is performed if a user visits a web application that requires
the user’s authorization to access a web service. This process runs through the following four
steps:

In the first step, the web application sends a request for a temporary token to the web service.
This request contains a client id, which was obtained at the registration of the web application
at the web service. The web service responds with a newly generated temporary token and
saves the association between the received client id and the temporary token.

In the second step, the web application responds to the initial request by redirecting the user’s
browser to the web service. This redirected request contains the previously gained temporary
token. At the web service, the user is asked to authenticate. As the web service saved the
client id for the received temporary token in the first step, the service is able to identify the
web application. After authentication, the user is asked if authorization for the web application
should be granted. If the user approves, the browser is redirected back to the web application.

In the third step, the web application is notified that the authorization process is complete by
the redirect. It sends the web service a request to exchange the temporary token with an access
token. The temporary token is only used for the authorization process. In contrast, the access

182

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 29: OAuth Process Flow

token is used to perform the operations of the web service that require authentication. After
the web application received the access token, the authorization process is completed.

Finally, in the fourth step, the web application is allowed to use the functions provided by the
web service in the name of the user. As proof of the permission, the application includes the
access token in each request to the external API. With the functions of the web service and the
data the user stored on it, the web application is able to fulfill the user’s requests.

D.2.2 UMA

On 23rd March 2015, the Kantara Initiative 10 has approved the version 1.0 of the User-Managed
Access (UMA) protocol standard. UMA is an access management protocol based on OAuth 2.
Utilizing the UMA protocol allows users to authorize access to their online resources. These
online resources can consist of personal data such as identity attributes, general content such

10http://kantarainitiative.org

183

http://kantarainitiative.org

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

as pictures, and services. In other words, utilizing UMA enables the user to precisely manage
the access to his/her resources. [114]

This section is organized as follows: We first describe new terms the Kantara Initiative has
introduced in the context of UMA. We explain the UMA protocol standard specification and
provide a high level overview of the UMA flow. Then, we explain the connection of UMA to
other standards. Finally, we give details about the features of UMA.

UMA Terminology

The Kantara Initiative has introduced new terms in context of UMA. These terms are used in
the UMA specification, therefore, the important terms are described as follows. [114]

• Resource Owner (RO): The RO is the owner of an OAuth resource in a User-Managed
Access (UMA).

• Resource Server (RS): The RS describes the server where the resources are located
managed by the resource owner (RO).

• Authorization Server (AS): The AS is a server which is responsible to authorize the
resource access for requesting parties.

• Requesting Party (RqP): The RqP describes the end user, which is using a client to
request access a protected resource. The RqP is usually not the resource owner it is a
user who wants to access a resource which belongs to the resource owner.

• Client: The client is an application used to request access to a protected resource.

• Protection API Token (PAT): The PAT is an OAuth access token utilized by the
Resource Server (RS) at the protection API.

• Authorization API Token (AAT): The AAT is an OAuth token used for accessing
the authorization API by the Client.

• Requesting Party Token (RPT): The RPT is an UMA access token which can be used,
together with the related authorization data, by the client to get access to a resource on
the resource server.

• Authorization Data: Authorization Data are data related to a RPT which are used
to by the client to access a resource at the RS. Authorization data are created by the
authorization server.

• Policy: A policy is the configuration of the authorization server consisting of configuration
parameter.

• Protection API: The protection API offers an interface used to access the authorization
server. Only authorized entities can communicate with the protection API using the
protection API token.

184

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Authorization API: The authorization API is utilized by the authorization server to
get authorization after authentication. Clients need credentials at the authorization API
together with the authorization API token (AAT).

High Level Flow of UMA

The UMA protocol specifies how the Resource Owner (RO) controls the protected resource
access by the clients. It is a profile of OAuth 2 and consists of a set authorization and consent
APIs. UMA basically allows a user to precisely define rules on how to share an online resource
and with who using policies. A so-called Requesting Party (RqP) can then request access to
the resource.

UMA consists of three phases which are illustrated in Figure 30 and described as follows. [114]

Figure 30: UMA’s Three Different Phases [112]

The high level flow diagram shown in Figure 31 is explained in detail as follows [59] [113].
Moreover, the list bellow identifies the single steps of the high level flow of UMA as well as the
three phases of the process flow.

Phase 1 - Protect a Resource:

• The Resource Owner (RO) selects the resources to protect at the Resource Server (RS) –
this is out of band.

• The RO configures the Authorization Server (AS) using policies. These policies are related
to a resource on the RS – this is out of band.

1. In the first step the RS registers the resource sets and scopes. To be able to communicate
with the protection API a Protection API Token (PAT) is required. The PAT must be
included in all protection API calls.

185

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Phase 2 - Get Authorization:

2. A Requesting Party (RqP) requests access to a resource at the RS by using a client.

3. RS checks permission for attempted request at the AS.

4. After successfully checking the request a permission ticket is created by the AS and trans-
mitted to the RS.

5. The RS returns an error 403 including the URI of the AS and the permission ticket.

6. The client is using the permission ticket together with AS’s URI to request authorization
data. Furthermore, the client needs an Authorization API Token (AAT) when communi-
cating with the authorization API.

7. After successfully verify the request from the client by the AS, the AS generates and
returns a Requesting Party Token (RPT) together with the authorization data. The
verification is successful when the RO’s policies have been met.

Phase 3 - Access a Resource:

8. The client utilizes the received data to request the resource at the RS.

9. The RS introspects the RPT at the AS.

10. The AS returns the status of the token to the RS.

11. Finally, the RS returns the status of the token and access to resource on success otherwise
not.

Relation to other Technologies

UMA is based on OAuth 2 and may be used with OpenID Connect or SAML as identity
protocol. Figure 32 shows a Venn-diagram of the UMA protocol standard and symbolizes the
interconnection between the different technologies with the overlapping parts.

The different parts of the Venn-diagram are detailed as follows:

• OAuth 2 is utilized to control access to web APIs. Furthermore, OAuth 2 is used for
calling applications, which is based on authenticated identity.

• OpenID Connect can be used in this context for single sign-on (SSO). Moreover, the
OpenID Connect protocol can be used to manage the session management and the identity
claims retrieval.

• User-Managed Access allows the user to manage the access to his/her online resources
stored on the resource server (RS).

186

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 31: UMA’s High Level Flow [59, 113]

Figure 32: Venn-Diagram of the UMA Protocol Standard

Furthermore, additional technologies can also be included:

• SAML could be used instead of OpenID Connect as identity protocol.

187

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• XACML could be utilized as extension to process the access policies. XACML standard
contains the authorization policies, the XACML engine to process the policies and the
definition how policies are being processed.

Features

In OAuth the connection between client and authorization server as well as the connection
between client and resource server is unstated whereas UMA fully defines a standard interface
between these components. The authentication of the requesting party at the authorization
server is out of band for the UMA standard which leaves space to include any authentication
method or protocol.

Utilizing UMA offers different features such as enabling the person-to-person sharing as well
as the person-to-organization sharing where OAuth typically only person-to-self sharing allows.
UMA allows that many pairwise connections can be managed, controlled and revoked at the
same time.

In OAuth the authorization is usually based on simple authentication whereas UMA allows
to create fine-grained policies. Utilizing these authorization policies drives to fine-grained and
claim-based authorization decision. In OAuth are usually scopes defined and utilizing UMA
instead allow the user to create arbitrary rules for the authorization policies.

D.2.3 WS-Trust

WS-Trust is an OASIS standard with the goal to construct trusted SOAP message exchanges.
Trust relies in this standard on the use of security tokens which are introduced through WS-
Security. It describes how security tokens can be issued, renewed, and validated by the com-
munication partners.

The basic model of WS-Trust is described in Figure 33. It starts with the security token
requester which requests a security token from a security token service. The security token
service verifies the request, issues a security token and returns it to the requester. The requester
can now provide this security token to the security token consumer, which is usually the service
that the security token requester wants to access. By using the security mechanisms introduced
by WS-Trust the security token consumer can verify the claims in the security token since it is
issued by the security token service.

WS-Trust defines four types of bindings. Issuance Binding, Renewal Binding, Cancel Binding,
and Validation Binding:

• The Issuance Binding describes how a client can request one or multiple Security Tokens
and how the Security Token Service should respond those tokens. The response is usually
a combination of the requested security token and a proof-of-possession token. The proof-
of-possession token is cryptographically bounded to the security token. Thus the requester
can proof with this token that he really possesses the security token.

188

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 33: WS-Trust Model

• The Renewal Binding describes how an already issued token can be renewed. The
requester has to provide the token or at least a reference to the token that has to be
renewed. The renew operation can be applied to token that are already expired. It is up
to the security token service to define a time limit for how long expired tokens can be
renewed.

• The Cancel Binding describes how to disable already issued tokens. For example, a
client has finished his business application and no longer needs the issued token. To
prevent further use of it, the client invalidates it at the security token service. After a
token is cancelled it can no longer be validated or renewed at the security token service.

• The Validation Binding describes how a security token can be validated at the security
token service.

Before security tokens can be exchanged it is often necessary to negotiate and transmit crypto-
graphic challenges between requester and security token service. The negotiation and challenge
process used in WS-Trust is described in Figure 34: The Service A requests a token at Service
B. This service responds with a challenge. The Service A computes an answer for the challenge
and returns it to Service B. After verifying the answer, the Service B can issue and return a
security token. Please note, that it is possible that Service A itself challenges the Service B at
his first request. Thus Service B has to provide an answer itself.

WS-Trust specifies the following challenging modes:

• Signature Challenge: In this challenge a string is included in the Request Security
Token Response or Request Security Token. The recipient of this challenge has to sign
this string and returns it to the requester. It is up to the recipient and requester to
negotiate a proper sign algorithm.

• User Interaction Challenge: In this challenge a user interaction should be integrated
in the answer to this challenge. The default challenge can be either a textual information
by the user or a choice selection between multiple alternatives. Further extensions of this
challenge can include a secret PIN or a one-time-password (OTP) input by the user.

189

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 34: Negotiation Process in WS-Trust

• Binary Exchanges: In this challenge additional binary information can be passed
through the negotiation phase. It is a good practice to use binary exchange informa-
tion to establish a secure channel to secure the token and proof-of-possession token that
should be issued later on.

• Key Exchange Token: Within this token a requester or issuer can exchange entropy or
a key to the other party.

• Custom Exchanges: An extension point where custom XML-based exchanges can be
specified in an own profile.

D.3 Policies

WS-Security and WS-Trust allows a highly flexible secure communication between partners.
In order to establish a secure and trusted communication each partner should have knowledge
about the desired level of security that is needed for the communication. For example, a
service needs to know the authenticity of a requester that requires a signature of a message. In
contrast a client wants to hide information in a request for potential attackers and thus wants
to encrypt the message for the recipient. In both cases the server and the client needs to know
these requirement thus that they can exchange for example key material in order to sign and
encrypt the message parts. To express these needs the W3C consortium created the WS-Policy
specification 11. WS-Policy is a framework to express constraints or requirements for a web
service or a client who can access web services.

Another policy technology is the eXtensible Access Control Markup Language (XACML).
XACML provides a framework for a high flexible access control management system. Poli-
cies are used within the framework to express access control rules on resources. The following
sections describe the WS-Policy and XACML technologies in detail.

11https://www.w3.org/TR/ws-policy/

190

https://www.w3.org/TR/ws-policy/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

D.3.1 WS-Policy / WS-SecurityPolicy

Figure 35 describes the underlying model for WS-Policy. The root element of a WS-Policy is
a policy. It contains of zero or multiple policy alternatives. Each policy alternative expresses
a choice while evaluating the policy. A policy alternative contains of zero or multiple policy
assertions. Each policy alternative describes the effective behavior only implemented by the
including policy assertions. A policy assertion finally is a concrete requirement, capability or
other functional behavior that is stated about an entity. This entity is called the policy subject.
A policy assertion can be further specified by a policy expression.

Figure 35: WS-Policy Model

Policies are defined in the XML Infoset representation straightforward to their model structure.
The namespace for a WS-Policy is http://www.w3.org/ns/ws-policy and is abbreviated as
„wsp“. The normal form of a policy uses the following three nested elements:

• wsp:Policy: The root element of a policy. All subsequent elements describe the charac-
teristic of this policy.

• wsp:ExactlyOne: The list of policy alternatives. It is valid to have an empty list.

• wsp:All: Represents a policy alternative which itself is a list of policy assertions that
have to be fulfilled.

Policy Intersection

Using policies between multiple parties often results in different policies between all participants.
Since policies are used to express the requirements and needs by each different partner for a
successful and secure communication both parties have to negotiate a reasonable policy which
results in an agreement where both parties are satisfied. The process to determine such a policy
is called policy intersection and depends on finding a compatible policy. Two policies A and B
are compatible if (according to the WS-Policy spec):

• A and B have the same policy type

• either of them contains a nested policy expression, they are compatible if both of them
have a nested policy expression and the alternative in the nested policy expression of one
is compatible with the policy alternative in the nested policy expression of the other.

Keep in mind that this definition only covers the fundamental ruling of how the intersection
of two policies works. Further specifications of various policy types should take into account

191

http://www.w3.org/ns/ws-policy

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

to describe whether or not two policy types are compatible. In addition, WS-Policy does
not describe the compatibility between policy assertions that use parameters. It is up to the
specification to describe how the intersection functions between policies that use parameters.

WS-Security Policy

WS-Security Policy is an OASIS 12 standard which extends the WS-Policy model with security
policies that defines security requirements for WS-SOAP Message model13, WS-Trust14 and
WS-SecureConversation15 for messages on a communication path.

WS-Security Policy defines a Security Assertion Model which consists of the following type of
security assertions:

• Protection Assertion

• Conditional Assertion

• Security Binding Assertions

• Supporting Token Assertions

• WSS and Trust Assertions

Security assertions are associated with a scope of protection which identifies message parts that
are protected in the specified way by a security assertion. Security assertions can be used in
combinations to each other in order to qualify a specific assertion further.

Security policies targeting a subject during the message conversation. These subjects are iden-
tified by WS-PolicyAttachment16 and can be:

• Message Policy Subject: Specifies that a policy is attached to a message which can be
a wsdl:message itself or a wsdl:input, wsdl:output, or wsdl:fault inside of a wsdl:operation
of a wsdl:portType or wsdl:binding.

• Operation Policy Subject: Tokens that are bound to an operation which can be on a
wsdl:portType or a wsdl:binding.

• Endpoint Policy Subject: Tokens that are bound to an entire endpoint. They can be
specified on a wsdl:portType, wsdl:binding or wsdl:port element.

12http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.
html

13http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
14http://docs.oasis-open.org/ws-sx/ws-trust/200512
15http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
16http://www.w3.org/TR/2007/CR-ws-policy-attach-20070228/

192

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://www.w3.org/TR/2007/CR-ws-policy-attach-20070228/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Protection Assertions

A Protection Assertion defines what is being protected and how strong the level of protection is.
They should usually be defined for message policy subjects but can also be defined for operation
and endpoint policy subjects meaning that either all messages of an operation or all operations
of an endpoint are protected by this assertion.

There are three types of Protection Assertions:

• Integrity Assertion: Specifies how parts of a message are protected by integrity con-
straints. The protection can range from SOAP Message security mechanisms as well as
external mechanisms like sending a message via HTTPS. The exact mechanisms are de-
termined by the security binding assertion. Integrity Assertions can be a SignedParts
Assertion which uses QNames to identify parts of a message that have to be signed as
well as the SignedElements Assertion which uses XPath expressions to specify what has
to be signed.

• Confidentiality Assertion: Specifies how parts of a messages are protected by confiden-
tiality constraints. The protection can range from SOAP Message security mechanisms as
well as external mechanisms like sending a message via HTTPS. The exact mechanisms
are determined by the security binding assertion. Confidentiality Assertions can be a
EncryptedPartsAssertion which uses QNames to identify parts of a message that have to
be encrypted. It can be an EncryptedElements Assertion which uses XPath expressions
to specify what has to be encrypted. It can be a ContentEncryptedElements Assertion
which specifies elements which content needs to be protected by encryption mechanisms.

• Required Elements Assertion: Specifies which header elements in a message have to
be present during the communication. It can be specified via XPath as well as QName
references.

Token Assertions

A Token Assertion is used to specify the type of token that will protect a message. The following
properties can be specified:

• Token Inclusion: Specifies if the token should be included in the message or, if not, that
cryptographic mechanism should be used to retrieve the token.

• Token Issuer: This element describes the issuing authority of the token. Usually its
pointing to the issuers endpoint address.

• Required Claims: Specifies the claims about an entity that a token of an issuer should
carry. It is defined in the WS-Trust namespace. Claims are bound by issuing entities on
tokens. Thus it is not necessary to carry all claims in one token but split them across
multiple tokens.

193

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Token Properties: The Token Properties are used to specify if and howWS-SecureConversation
should use derived keys.

• Token Assertion Types: Specifies the token that has to be used. WS-SecurityPolicy
defines the following types of tokens: Username Token, Issued Token, X509 Token, Ker-
beros Token, SpnegoContext Token, Security Context Token, Secure Conversation Token,
SAML Token, REL Token, HTTPS Token, KeyValue Token.

Security Binding

All of these information is bundled together in security bindings that describe how the security
is performed during the communication. A binding specifies what tokens are used and how they
are bound to messages, how keys are exchanged, what message elements are required, and addi-
tional parameters for various algorithms (for example canonicalization etc.). WS-SecurityPolicy
defines three types of security bindings. The TransportBinding defines that a communication is
secured by other means than WS-Security, for example HTTPS. The SymmetricBinding defines
message protection by means of WS-Security. The Assertion allows to define Encryption and
Signature Tokens. Both are used for the communication from sender to receiver and from re-
ceiver to sender. The AsymmetricBinding defines message protection by means of WS-Security.
Signature and Encryption Tokens are split into tokens that are used by the Initiator and tokens
that are used by the recipient.

Supporting Tokens

The Security Binding defines which tokens are used for a message signature and message en-
cryption. However, if those tokens do not provide enough claims about the entity additional
tokens can be defined for a message exchange. Those tokens are usually attached to the se-
curity header and are protected by the means of the security binding’s token. Nevertheless, a
supporting token can carry cryptographic material and thus is able to sign or encrypt parts of
a message in addition to the security binding’s token.

D.3.2 XACML - eXtensible Access Control Markup Language

eXtensible Access Control Markup Language (XACML) is an OASIS17 standard which specifies
schemas for authorization policies. Besides the policies defines the XACML standard and also
the policy decision engine [134].

A typical scenario would be that a user tries to access a service or resource. To get access
to the requested service/resource, the request hast to be evaluated against policies. These
policies have to be created before the request. The policies contain rules which are used in
the decision making process. The computed authorization response can be “Permit”, “Deny”,
“Indeterminate” or “Not Applicable” [174].

17https://www.oasis-open.org/

194

https://www.oasis-open.org/

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The XACML standard follows the decoupling principle which is realized with separating the
enforcement part from the decision part and also the management part. Each of these parts are
realized with the corresponding XACML system point. For the enforcement part, the Policy
Enforcement Point (PEP) is used, for the decision making process the Policy Decision Point
(PDP) and for the policy management the Policy Administration Point (PAP).

We first provide a high-level description of the together with the different system parts. Then,
we identify parts and process flows of the XACML engine. Subsequently, the XACML Policy
with its elements and attributes are detailed.

Architectural Overview

This section gives an overview of the XACML architecture. Figure 36 illustrates the high level
overview of the XACML architecture.

Figure 36: XACML High Level Architecture [134]

The Policy Enforcement Point (PEP) is responsible for protecting the access to a resource.
This PEP receives the request to access a resource send by a user. After receiving the request, it
forwards the request in form of an authorization decision request to the so-called Policy Decision
Point.

The Policy Decision Point (PDP) evaluates authorization decision request against the poli-
cies in order to compute an access decision. Policies consists of a set of rules which are used to
calculate authorization decisions. The PDP is using the so-called XACML engine to compute
the access decision.

The PDP may requires additional information to compute the decision. It is getting additional
information from the Policy Information Point (PIP) located in the support part shown in
Figure 29. The PDP has to include all applicable policies in the decision making process. To

195

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

get all policies which apply to a request the so-called Policy Retrieval Point (PRP) is used.
This PRP can be an internal database as well as external/online storage places where policies
are stored.

The admin is responsible for managing the policies using the Policy Administration Point
(PAP). This PAP allows the admin to create, delete or modify policies on internal and external
storage.

XACML Engine

In this section, the XACML engine is described in detail. The XACML engine is used by
the PDP to compute an access decision by evaluating the access authorization request against
policies. Figure 37 depicts the process flow together with the main components of the XACML
engine [134].

Figure 37: XACML Engine Process Flow [134]

The XACML engine takes as input the authorization decision request and also the applicable
policies. One request can apply to more than one policy the so-called policy set where each
policy can have more than one rule. The engine is using a combining algorithm to combine
applicable policies and rules. This combining algorithm describes the logical way how the
policies have to be combined and processed. There are different combining algorithms defined
which are identified in the XACML specification [134]. Two examples of possible algorithms
are:

196

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Permit-Overrides: This algorithm will return permit if any decision of a single rule
is permit. Even if another applicable rule results deny, the decision is still permit. The
permit overrides all other decisions and the algorithm will stop after the first permit is
computed. To provide a simpler view, by disregarding the special effects indeterminate
and not applicable, this combining algorithm acts like a logical OR.

• Deny-Overrides: This is the opposite of the permit-override algorithm which returns
deny after the first deny has been computed. This combining algorithm acts also like a
logical OR, when not considering the indeterminate and not applicable effect.

After evaluating the request, the engine has three different return values which are identified as
follows.

• Permit: The request is evaluated successfully and authorized to continue the operation.

• Deny: The engine tried evaluating the request against all applicable polices using the
given combining algorithm and has computed that the request is not authorized to access
the requested resource/service.

• Indeterminate: The PDP is not able to evaluate the requested access because exception
have been occurred such as missing attributes, network errors while retrieving policies,
division by zero, syntax errors in the request or policy, etc.

• Not Applicable: The XACML engine could not find an applicable policy/rule/target
for the given request, therefore, it could not be evaluated.

XACML Policy

This section details the elements and attributes of the XACML policy and its structure, which
is shown in Figure 38. Furthermore, this section should give a short introduction to the main
elements and attributes because there are a more optional elements available as described in
this section which can be found in the XACML specification [134].

The XACML policy is one of the main components of the XACML standard. Policies are created
by an administrator or user to define the access rules for a specific resource. Each of these rules
identifies the target on which rule applies. A target consists of simplified conditions for the
subject, resource and action that must be met to apply to a given request. The rule contains
besides the target a condition. This condition is the heart of a policy because it describes a
predicate which has to be satisfied to perform the effect defined in the rule.

XACML Policy Element:

• Policy ID [Required]: The policy identifier is an attribute which has to be unique for a
specific PDP. The PAP is responsible to maintain the uniqueness. The policy ID possibly
consist of the URI or URL which can solve this issue.

• Version [Required]: The version identifies the version of the policy.

197

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 38: XACML Policy Elements [174]

• Rule Combination Algorithm [Required]: The rule combination algorithm is an at-
tribute used by the XACML engine to identify the used combining algorithm. Combina-
tion algorithms are utilized to combine policies and rules if more than one policy or rule
is applicable to a request. More details about these algorithms can be found in Figure 37.

• Description [Optional]: The description element gives space for a personal description
or comments.

• Policy Issuer [Optional]: This attribute describes the policy issuer.

• Target [Required]: The applicability of the policy is defined in the target element. It is
also possible that the target element is not entered by the creator but rather computed by
the referenced rule elements. The target element has nested elements which are described
below.

• Rule [Required]: The rule element contains a sequence of rules which must be combined
according to the rule combining algorithm. Rules whose target elements and conditions
match the request must be considered otherwise they should be ignored. The rule element
contains nested elements which are described below.

• Obligation Expressions [Optional]: The obligation expression element contains a con-
junctive sequence of obligation expressions which must be evaluated by the PDP. The
resulting obligation must be fulfilled by the PEP together with the authorization deci-
sion. An example would be an expression which defines that after unauthorized requesting
access to a resource this event is being logged.

• Advice Expressions [Optional]: The advice expression element contains a conjunctive
sequence of advice expressions which must be evaluated by the PDP. The resulting advice
provides additional information to the PEP. An example would be an expression which

198

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

defines that after successfully accessing a resource a predefined user will get an email
notification about this event.

XACML Rule Element:

• Rule ID [Required]: The rule identifier is a string identifying the rule.

• Effect [Required]: The attribute effect represents the resulting effect after evaluating and
matching the request. This effect can either be “Permit” or “Deny”.

• Description [Optional]: The description element gives space for personal description or
comments.

• Target [Optional]: Identifies the set of requests which shall be evaluated. If the target
element is omitted, the target element of the enclosing policy takes place.

• Condition [Required]: The condition element describes a predicate which must be satis-
fied for the rule to get its effect value.

XACML Target Element:

• Subject: The subject defines the target for which this rule applies. It consists of a subject
attribute name and a subject attribute value.

• Resource: The resource element defines the location of the requested resource which
might be a URI or a URL.

• Action: The action element identifies the requested activity on a resource such as read,
write execute, etc.

• Environment: The environment element specifies the system width where this poli-
cy/rule applies. For example, it is possible to restrict policies/rules to specific domains
with utilizing this element.

D.4 Cryptographic Protocols and APIs

This section completes the fact sheets of the W3C Web Crypto API and KMIP from Section 6.4.

D.4.1 W3C Web Crypto API

The Web Cryptography API specification [171] defines a JavaScript API to access the crypto-
graphic functions that are implemented in the browser. As this API was designed for JavaScript,
it follows an asynchronous event-based approach to model the execution of long-running cryp-
tographic operations. The provided functions can be grouped in two classes. The first class are
the cryptographic operations, which perform encryption and decryption, signature creation and

199

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

verification, and hashing. As these functions are natively implemented in the browser, they are
more efficient than JavaScript implementations. The second class are key operations, which can
be used to generate or derive keys, as well as to export and import key material. The browser
manages the actual key material and can enforce access restrictions on them, like for which
cryptographic functions a key may be used, or if the raw key material may be extracted.

D.4.2 KMIP – Key Management Interoperability Protocol

Key Management Interoperability Protocol (KMIP) [137] is a communication protocol stan-
dard developed by OASIS. The current version is the version 1.2 of the specification standard
approved by OASIS on 19th May 2015. This protocol standard has been developed for the
storage and maintenance of key, certificate and secret objects. It can be seen as interoperability
protocol used for secure communication between server and client. The KMIP standard sup-
ports different crypto principles such as symmetric key encryption, asymmetric key encryption
and digital signatures. The supported technologies make the KMIP to a powerful standard for
example for the usage in enterprises.

The issues which KMIP addresses are the communication between the clients and the key
management system as well as the management of the key material itself. It is possible, utiliz-
ing KMIP, to perform operations such as creating key material. KMIP uses network security
mechanisms such as HTTPS and TLS to perform authenticated communication between client
and key management system. KMIP relies on already existing standards for encryption, key
derivation and other operations.

This section is structured as follows: First, we provide a high-level overview as well as the
motivation for utilizing this protocol. Then, we detail the different elements of the KMIP
standard.

KMIP High-Level Description

KMIP [137] tries to resolve the problem of missing interoperability between different cryp-
tographic systems. Figure 39 depicts the key management system in an enterprise without
utilizing KMIP. The obvious issue in this system is that each system has its own key manage-
ment system. The key management systems used cannot be combined most of the time because
of missing interoperability. Different key material or different protocols used in the systems are
possible reasons for the missing interoperability. Therefore, each system is simply using its own
key management system including key material, ciphers, protocols etc. This separation of the
key management systems creates obstacles within an enterprise such as administration overhead
or difficulties in adding new systems.

The KMIP is trying to solve the interoperability issue of enterprises by specifying a standard
protocol for clients which require key material. Figure 40 illustrates how KMIP solves this in-
teroperability issue using different systems. The protocol defines a low-level protocol which can
be used for requesting and delivering keys between clients and key management system and en-
ables fully interoperable key management. Utilizing KMIP allows enterprises to deploy a single

200

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 39: IT-Infrastructure in an Enterprise not using KMIP

key management infrastructure which is used to manage the key material for all applications,
devices and systems within an enterprise. These components require different cryptographic
material such as symmetric keys, asymmetric keys, certificates or other cryptographic objects,
which are supported by the KMIP. A consistent model of cryptographic objects, attributes
and operations is used to be able to create interoperability between various clients. Utilizing
KMIP can reduce operational and key management costs, and reduce the risk in deploying
cryptographic capabilities. [137]

KMIP tries to offer a secure interoperable solution to perform key operations. The usage of
cryptographic operations requires key material which can with KMIP be managed on a single
management point.

Specification

The KMIP standard consists basically of three primary elements which are the objects, the
attributes and the operations. Each of these elements are detailed as follows.

Objects: The objects in the KMIP standard consists of two different types, namely the base
objects and the managed objects.
First, the base objects are used within a message of the protocol, but these objects are
not managed by the key management system. To base objects belong objects such as
attribute objects, credential objects, key block objects, key value objects, key wrapping
data objects, data objects, data length objects, signature data objects etc [137].

201

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 40: IT-Infrastructure in an Enterprise Utilizing KMIP

Second, managed objects are objects that are used as subject for key management op-
erations. The managed cryptographic objects are a subset of the managed objects and
describe these objects which contain cryptographic material such as certificates, keys or
secret data. Examples for managed objects are certificate objects, symmetric key objects,
public key objects, private key objects, split key objects, secret data objects, PGP key
objects and more [137].

Attributes: Attributes in the KMIP standard are identifying attributes of the associated man-
aged objects. Objects can have multiple attributes. Attributes can be obtained by the
client or the server using the “Get Attribute” operation. Attributes can be set, modified
or deleted with the corresponding operations “Add Attribute”, “Modify Attribute” or
“Delete Attribute”. It might be that an attribute is read-only, which cannot be modified
or deleted by either the client or the server. Examples for attributes are unique identi-
fiers, names, object types, cryptographic algorithms, cryptographic lengths, cryptographic
parameters, certificate types, certificate lengths, digital signature algorithms, operation
policy names and more.

Operations: This section describes the operations which can be requested by either a client
or the key management system. Not all clients have to support all kind of operation.
KMIP operations can be distinguished between Client-to-Server operations and Server-
to-Client operations. Basically, the operations can be clustered into different operation
categories such as cryptographic operations, attribute manipulation operations, certificate
operations etc. A subset of the Client-to-Server operations is detailed as follows [137].

202

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Create: The “Create” operation is utilized to generate a new symmetric key and
after success a managed cryptographic object is returned.
• Create Key Pair: The “Create Key Pair” operations request the server to create a
new public-private key-pair and register the two new managed cryptographic objects.
• Certify: The “Certify” operation is used to generate a certificate object for a public

key. Locate: This operation is used to search for one or more managed objects
depending on the given attributes.
• Check: This operation requests the server to check for the use of a specific managed

object according to the given values specified in the request.
• Get: The “Get” operation is used to request a managed object by its unique iden-

tifier.
• Get Attributes: This operation is utilized to request one or more attributes asso-
ciated with a managed object.
• Add Attribute: Using this operation allows a client to add an attribute to a man-
aged object.
• Modify Attribute: This operation requests a modification of an already existing
attribute from a specific managed object.
• Delete Attribute: This operation deletes an attribute associated with a managed
object.
• Activate: The “Activate” operation requests the server to activate a managed ob-
ject. The operation has to be performed on an object which has the “Pre-Active”
state.
• Destroy: This operation is used to tell the server to destroy key material related to
a managed object. The meta-data related to the key material may be retained by
the server.
• Validate: This operation is used to validate a certificate chain and return the infor-
mation about its validity.
• Encrypt: This operation requests an encryption operation on the provided data
using a managed cryptographic object.
• Decrypt: Using the “Decrypt” operation performs the decryption of the provided

data using a managed cryptographic object.
• Sign: The “Sign” operation requests the server to perform a signature operation on
the given data by using a specific managed cryptographic object.

The counterpart to the Client-to-Server operations are the Server-to-Client operations
which consists of two operations, the "Notify" and the "Put" operation.

• Notify: The “Notify” operation is used to notify a client of an event which resulted
by attribute change of an object.
• Put: The “Put” operation is used to push managed cryptographic objects to the

client.

203

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

D.5 Other Technologies

This section completes the fact sheet from Section 6.5.

D.5.1 SCIM

The System for Cross-Domain Identity Management is a standardized protocol developed by the
Internet Engineering Task Force (IETF). The latest version 2.0 has been released in September
2015. The system was designed to simplify the user identity management in cloud based appli-
cations and services. In particular, the SCIM system defines a protocol standard together with
a core schema and an object model. This offers a standardized way to create, read, update and
delete (CRUD) identity data. The SCIM system is designed for the usage within enterprises as
well as for consumer based digital identities.

Furthermore, this standard aims to solve one of the hardest challenges in identity manage-
ment, namely interoperability. Interoperability issues emerge for example by using different
technologies such as different identity protocols. SCIM tries to solve this issue and simplifies
the identity management. Summarizing, SCIM is a standard designed to enable identity provi-
sioning in cloud based applications and web services, basically, SCIM aims are: “make it fast,
cheap, and easy to move users in to, out of, and around the cloud” [99].

SCIM allows to manage identities of multiple cloud service providers. When an identity resource
has been created, updated or deleted, the identity resources are synchronized with multiple cloud
service provider.

Authentication and authorization is out of band from the SCIM specification. This gives the
developer freedom to implement authentication and authorization mechanisms based on the
system requirements. The choice of authentication mechanism can impact the interoperability.
Additionally to the authentication and authorization mechanisms are the non-identity related
resources are out of band too.

The main advantages of using SCIM are:

• User identities re managed in a single place.

• SCIM uses standards for communication such as REST API and JSON.

• The SCIM standard is easy to extend.

• SCIM aims to solve interoperability issues.

• User identities can be synchronized between different cloud service providers.

This section is structured as follows: First, we detail the main actors according to the SCIM
standard. Then, we explain the SCIM schemas together with the object model. Finally, we
describe SCIM operations.

204

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Actors

The actors in SCIM [98] describe the operating parties on both sides of the SCIM protocol. We
can identify three main actors which are shown in Figure 41 and described as follows.

Figure 41: SCIM Actors [98]

• Cloud Service Provider (CSP): The cloud service is operated by the cloud service
provider, which is in a Software as a Service (SaaS) scenario basically an application
provider. The CSP can be seen as the part of a system which holds the identity information
being operated, furthermore, it is the services which the user interacts with.

• Enterprise Cloud Subscriber (ECS): The enterprise cloud subscriber can be seen as
middle tier of aggregation for identity records. An ECS is managing multiple cloud service
users, which can be grouped together to administer as part of some broader agreement or
operational exchange. For example, an ECS represents an enterprise which has bought a
service from a service provider and administer it for the cloud service users within this
organization.

• Cloud Service User (CSU): The cloud service end user is represented by the so-called
cloud service user. This is for example a person who is logging into and using a cloud
service.

Schema

The SCIM core schema is based on an object model depict in Figure 42. In this model is the
main object the resource object and other objects are derived from it. All objects have the
same common attributes which are an identifier, and external identifier and meta-data except
the service provider configuration object. This service provider configuration object differs from
the other objects because it does not contain any user information and is used to discovery.

The attribute structure of the objects is based on the relating schemas where each attribute
has a different type, cardinality or mutability. Furthermore, the schema specifies which data
are required and which data are optional in an object. Additionally, the schemas define also the
data type of the attributes as well as the way the attributes are being processed.

205

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The SCIM schema specification provides a minimal core schema, which can be used to represent
resources such as users and groups, as well as common attributes. The schema specification
also defines a standardized way how service providers possibly extend schemas. This extension
is used to define new resources and attributes.

Figure 42: SCIM Object Model [99]

The resource object and its attributes are detailed as bellow. The specification of the other
objects can be found in the SCIM specification [99]. The SCIM resource object, which can be
the Users, Groups, etc., contains common attributes. These attributes are listed and detailed
as follows.

• Id: The id describes a unique identifier for a SCIM resource, which is defined by the
service provider. Each representation of the SCIM resource must contain an id value.

• External id: The external id is set by the provisioning client and is an identifier for the
resource. This id is used to simplify identification of a resource between client and service
provider by allowing the client to use filter.

• Meta: The meta attribute is a so-called complex attribute containing resource meta data.
All sub attributes are assigned by the service provider and listed as follows.

– Resource type: The resource type name of a resource.
– Created: The date when the resource has been added to the service provider.
– Last Modified: This attribute describes the last time when the resource was mod-

ified by the service provider.
– Location: The location attribute contains the URI of the resource being returned.
– Version: The version of the resource being returned is described by this attribute.

Operations

The SCIM protocol defines HTTP methods which are used to manage resources such as users
and groups. The requests using the SCIM protocol are transferred in JSON or XML format
over HTTP using a REST (Representational State Transfer) API.

206

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

All requests to the service provider are performed using HTTP methods. These methods are
using a URL derived from the base URL. The responses are returned within the body of the
HTTP response and formatted as JSON. If an error occurs, it will be transmitted using HTTP
status response code. The following lines describe the use of different HTTP methods within
KMIP:

• GET: Retrieves one or more resources (partial or complete).

• POST: Creates new resources, a search request or maybe is used to create a new resource.

• PUT: This method modifies a resource by replacing existing attributes with a specific set
of replacement attributes. The PUT method is not used to create a new resource.

• PATCH: The patch method modifies a resource with a set of client specified changes.

• DELETE: This method is used to delete a resource.

The following list describes SCIM’s resources and endpoints together with the corresponding
HTTP operation supported. The description details what exactly is possible on a resource and
related endpoint using the supported HTTP methods.

• /Users (GET, POST, PUT, PATCH, DELETE): Retrieve, add and modify Users.

• /Groups (GET, POST, PUT, PATCH, DELETE): Retrieve, add and modify Groups.

• /Service-Provider-Config (GET): Retrieve the configuration of the service provider.

• /ResourceTypes (GET): Retrieve the supported resource types.

• /Schemas (GET): Retrieve the supported schemas.

• /Bulk (POST): Bulk updates one or more resources.

• [prefix]/.search (POST): The search can be performed from the root or within a resource
endpoint for one or more resource types.

207

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

E Details for eGovernment Technologies

In the following sections, we provide a detailed description of eGovernment technologies which
were previously evaluated and assessed in Section 7. First, Appendix E.1 provides details on
CNS, the National Smartcard Standard, whilst Appendix E.2 describes CSP-Cryptographic
Service Provider which is used to interface smartcard to establish an SSL client authentication.
Appendix E.3 describes the Public-Key Cryptographic Standards PKCS #11 that provides
guidelines and application programming interfaces (APIs) for the usage of cryptographic meth-
ods. Appendix E.4 gives details on ISO 7816, the international standard focused on contact id
card, especially smartcard. Finally, Appendix E.5 describes the framework of STORK/STORK
2.0 for enabling secure eID federation across European countries whilst Appendix E.6 provides
details on eIDAS Interoperability Framework which can be considered as an extension and a
modern generalization of the core of STORK Framework.

E.1 CNS (Carta Nazionale dei Servizi)

CNS (Carta Nazionale dei Servizi) is a national smartcard standard widely used in Italy. CNS
is a ISO 7816 smartcard with a client authentication X509 certificate on-board to allow digital
authentication over the Internet. CNS does not contain user photo or other sensitive data
(such as biometric data). CNS contains several personal data such as name, surname, fiscal
code, etc. Data are stored in different files and format (mainly ASN.1 and tag-length-value
coding) in order to assure large compatibility with existing software. It also contains a Netlink
structure that is dedicated to store some medical data known when the card is issued and that
can be modify by other “authorized” healthcare professional cards (HPC). Netlink derived keys
are stored on CNS in order to allow mutual authentication with HPC. It is possible to create
and store digital signature keys, using a file system section reserved to authorized Certification
Authorities. There are several CNS producers in Italy. Each of them must be compliant with
CNS rules (details are below) and must have a certification released by Italian Digital Agency.

The CNS file system can be described with a tree-representation as depicted in Figure 43a:
Where MF (Master File) is the smartcard root; DF (Dedicated File) is a directory, which
can contain EF (Elementary File); EF can also be stored under MF. Every file (MF, DF,
EF) has certain permissions (read, write, update, etc). CNS smartcard also contains BSO
(Base Security Object), which is a container for secret or sensitive data. BSO are used in
cryptographic operation and for the verification of the access conditions to the resources of the
smart card. Name, length and content of every file and BSO are precisely defined in CNS rules.
CNS contains approximately 12 DF, 21 EF and 25 BSO. CNS chip is capable of store from 16
to 64 kBytes of additional user data – depending on manufacturer.

One of the most important characteristic of CNS smartcards is ATR – Answer to Reset. The
Answer To Reset byte string returns information about the communication protocol, the card
and application type, the life cycle status, etc. While some of the bytes are defined by ISO,
as they are used by the communication protocol, there is the possibility to define the value
of other bytes, called Historical Bytes. To avoid possible interoperability problems, only the

208

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

(a) CNS File System (b) CNS APDU Commands

Figure 43: CNS

historical bytes are mandated, while the value (and, if applicable, the presence) of all the
interface characters is not fixed in CNS specification.

The card has to support the ISO protocol T=1. It may support also T=0, but protocol T=1 has
to be used during the use phase. The maximum communication speed is 115200bps 3.5712MHz,
typically used during the use phase to allow optimal performances. The value for Vcc during
the operational phase is 5 Volts.

The CNS needs a subset of the APDU (Application Protocol Data Unit) specified by the ISO
norms. Not all the ISO specified operating modes of the supported commands are needed. The
complete list of APDU commands used in the CNS is shown in Figure 43b.

CNS support the Secure Messaging (SM) protocol. Secure Messaging is used to protect the
communication between the interface device (IFD) and the smartcard. Secure Messaging is
typically used when an external actor (another smartcard, or a library) need to perform a
sensitive operation on CNS (i.e. create a digital signature structure). There are two ways to
communicate data in SM format:

• SM_ENC: APDU commands with enciphered data (data confidentiality)

• SM_SIG: APDU commands with cryptographic checksum (data authentication and in-
tegrity)

As mentioned above, every CNS is equipped with a X.509 digital certificate, for authentication
use. Certification authorities, which want to produce CNS certificate, must follow certain rules
and obtain a formal authorization from Italian Digital Agency. Of course every CNS certificate,
regardless of its issuer, has well defined characteristic, in order to guarantee interoperability

209

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

between applications. CNS is also equipped with magnetic stripe, typically used in legacy
applications, which read anagrafic data from magnetic band and not from CNS chip.

(a) Front (b) Back

Figure 44: CNS Card

CNS duration is six years. Authentication certificate loaded into CNS has the same duration
of the card (expiry date is printed on it). The card is also used to store citizen’s fiscal code
– that is also printed both on front and back side of the card, as shown in Figures 44a and
44b. CNS is not an id card: it does not contain any user photo or biometric info. Many
millions of CNS have been deployed in Italy since 2004 – almost 10 million are currently used
in the Lombardy Region. This has created a “digital ecosytem” of CNS-compliant smartcard
reader, cryptographic libraries and – at the end – client and web applications (including Identity
Providers), which use CNS smartcard for a lot of functionality (user authentication over the
Internet, user authentication on desktop client, fiscal code and age recognition in shops or postal
offices, digital signatures of documents, etc.).

E.2 CSP (Cryptographic Service Provider)

CSP (Cryptographic Service Provider) is a Windows software library that implements Microsoft
CryptoAPI (CAPI). CSP is typically use to perform cryptographic operations, such as strong
user authentication and secure email. In the LISPA eGovernment pilot, CSP is used to interface
smartcard to establish an SSL client authentication, using smartcard private key. This usage
needs certain browser, like Internet Explorer or Chrome. To perform the same cryptographic
operation on Mozilla Firefox, you need another, similar component, called PKCS#11 (out of
scope of this description). CSP is responsible for implementing cryptographic algorithms and
standards, so applications don’t need to be concerned about security details.

When used in a browser, CSP imports user authentication certificate into internal browser
store as soon as smartcard is inserted into a reader. From this moment, CSP is ready to react
to a request of SSL client authentication coming from a secure server, following the behavior
specified below: 1. When client authentication is required, CSP checks if root CA that issued
the SSL server certificate is trusted by client certificate store; 2. If so, CSP checks how many
user client certificate are issued by a CA configured as trusted on server side; 3. If more than
one user certificate is available, user is asked to choice one; 4. When user certificate is selected,
CSP – and SSL protocol itself – create a random challenge and sign it with user’s private key;
5. Smartcard typically reacts asking PIN associate with private key; 6. User inserts smartcard

210

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

PIN into a form shown by CSP; 7. If PIN is correct, challenge is signed and send to server –
from now on, SSL protocol continues without using CSP

From an architectural point of view, CSPs are independent modules that can be used by different
applications. A software calls CryptoAPI functions and these find an implementation into CSPs
functions. An important note is that application can define which CSP it is going to be used on
its calls to CryptoAPI. In other words, all cryptographic activity is implemented in CSP, and
CryptoAPI only works as a middleware or a wrapper between the application and the CSP.

Application layer has several constraints:

• Cannot directly access keys – keys are usable via handle only;

• Cannot specify some cryptographic details – CSP only let some commands are send to it;

• Cannot directly manage digital signature

In a smartcard scenario, several smartcards might have several CSP capable of using them. To
detect the correct CSP to use, operating system detects smartcard ATR (Answer to Reset) and
looks for an association into Windows Registry. Association is a match between an ATR and
a CSP capable of using that smartcard. In Italy there are several CSP compatible with CNS
smartcard – the main differences between them are about potentially user PIN caching, ATR
filtering, and PIN form request.

CSP implementation is typically based on DLL, with some special capabilities and restrictions:
due to these aspects, CSP must be digitally signed by Microsoft in order to be correctly used, and
signature verification must be done on load. Some CSP are currently available from Microsoft.
They are mainly focused on basic cryptographic functions, common to several countries or
regions, and on particular cryptographic support (i.e. Diffie-Hellman key exchange). The basic
implementation of CSP deployed by Microsoft is the so-called “base CSP”.

E.3 PKCS #11

The Public-Key Cryptographic Standards (PKCS) include a group of cryptographic standards
that provide guidelines and application programming interfaces (APIs) for the usage of crypto-

211

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

graphic methods. As the name PKCS suggests, these standards put an emphasis on the usage
of public key – asymmetric - cryptography.

PKCS #11 is a cryptographic token interface standard, which specifies an API, called Cryp-
toki. With this API, applications can address cryptographic devices as tokens and can perform
cryptographic functions as implemented by these tokens (i.e. smart cards or Hardware Secure
Modules – HSM). This standard, formerly developed by the RSA Laboratories in cooperation
with representatives from industry, science, and governments, is now an open standard lead-
managed by the OASIS PKCS #11 Technical Committee.

It follows an object-based approach, addressing the goals of technology independence (any kind
of hardware device) and resource sharing. It also presents to applications a common, logical
view of the device that is called a cryptographic token. PKCS #11 , or Cryptoki, assigns a slot
ID to each token. An application identifies the token that it wants to access by specifying the
appropriate slot ID.

Most commercial certificate authority (CA) software uses PKCS #11 to access the CA signing
key or to enroll user certificates. Cross-platform software that needs to use smart cards uses
PKCS #11, such as Mozilla Firefox and OpenSSL (using an extension). As already mentioned,
it is also used to access smart cards and HSMs. Software written for Microsoft Windows may use
the platform specific MS-CAPI API instead. Both Oracle Solaris and Red Hat Linux contain
implementations for use by applications, as well.

(a) Architecture of a PKCS System (b) Objects of a PKCS System

Figure 45: PKCS #11

A typical Cryptoki-based system architecture is depicted in Figure 45a. The cryptographic
device (aka token) is connected to the system via a slot. Typically, a slot corresponds to a
smart card reader or a specific card terminal. However, because Cryptoki offers a purely logical
view of the system, it could happen that different slots point to the same physical reader device
or, vice versa, a single slot could have more than one device.

A specific Cryptoki implementation maps the token’s physical structure, typically composed by
memory zones in which data, cryptographic keys and their digital certificates are stored, into a
logical structure that adheres to the hierarchical model shown in Figure 45b. Cryptoki’s objects

212

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

are classified depending on their visibility in public objects (i.e. accessible by all applications),
and private objects (visible only after granting access permissions typically performed via PIN-
verification as described later), and on their persistency in: token objects which persist when
the token is plugged-out from the slot and in session objects which don’t persist. For each
class of objects the specifications define a set of attributes (as described later) characterizing
all instances of the class, which, are inherited by derived classes, similarly to an object-oriented
model (for example, the Private Key class inherits all attributes from the Key class etc.). The
specifications define three main object classes:

• Data objects host generic data which semantics is defined by the application who created
them.

• Key objects contain a public, private or secret cryptographic key.

• Certificate objects store digital certificates.

Lombardy Region and Italian Government have designed CNS in order to be used by a PKCS
#11 module. Some typical use of a PKCS #11 library with CNS are: Firstly, in several browsers
such as Mozilla Firefox, a PKCS #11 dll is used to perform a SSL client authentication with a
smart card; Secondly, many stand-alone software uses PKCS #11 dll to create a digital signature
of a document; signing process involve CNS private key. Both open source PKCS #11 module
and vendor dependent are available on the market. A vendor implementation is needed when
vendor token implements specific functionalities.

E.4 ISO 7816

ISO 7816 is an international standard focused on contact id card, especially smartcard, managed
and published by ISO (International Organization for Standardization) and IEC (International
Electrotechnical Commission). The standard was published for the first time in 1987 and faced
a number of amendment, until 2013. It was initially written for contact-only cards (cards with
the pins exposed in the plastic).

ISO 7816 is a collection of fourteen chapters, described below. Parts 1 to 3 are the description
of the physical / link layer part of the protocol, part 4 and above describe the standardized
commands on the upper layer.

• Part 1: Physical characteristics - this part of ISO7816 is important for card manufacturers.
They are the ones that choose the materials and establish a process that embeds the
integrated circuit into the card

• Part 2: Dimensions and location of the contacts - this part includes standards about
number, function and position of the electrical contacts

• Part 3: Electronic signals and transmission protocols

• Part 4: Interindustry commands for interchange

213

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Part 5: Numbering system and registration procedure for application identifiers

• Part 6: Interindustry data elements

• Part 7: Interindustry commands for Structured Card Query Language (SCQL)

• Part 8: Security related interindustry commands

• Part 9: Additional interindustry commands and security attributes

• Part 10: Electronic signals and answer to reset for synchronous cards

• Part 11: Personal verification through biometric methods

• Part 12: USB electrical interface and operating procedures

• Part 13: Commands for application management in multi-application environment

• Part 15: Cryptographic information application

The entire standard covers a wide variety of card characteristic. The most famous and used
part is probably part 4 that specifies:

• contents of command-response pairs exchanged at the interface;

• means of retrieval of data elements and data objects in the card;

• structures and contents of historical bytes to describe operating characteristics of the card;

• structures for applications and data in the card, as seen at the interface when processing
commands;

• access methods to files and data in the card;

• a security architecture defining access rights to files and data in the card;

• means and mechanisms for identifying and addressing applications in the card;

• methods for secure messaging;

• access methods to the algorithms processed by the card. It does not describe these algo-
rithms.

Conformity to ISO 7816-3 and -4 is requested to smartcard reader which wants to be Italy CNS
compliant, for example. Most of ISO 7816-3 is important for reader manufacturers or developers
who want to establish a communication with a smart card on a very low level, the signal level.
In fact, conformity to these parts of the standard was one of the main request in a public tender
issued by Lombardy Region in 2006, with the target of acquire some millions of devices to let
citizen use CNS to authenticate on the internet to e-Gov and e-Health web service. ISO 7816,
as others ISO rules, are not freely available – a specific or subscription fee is required to access
this kind of documentation.

214

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Several parts of ISO 7816 have been reviewed (amended) due to technology and market inno-
vations, for example in contact-less card. Usually, contact-less cards comply with ISO 14443,
and optionally with ISO 7816 part 4. There are also cards that have dual interface.

E.5 STORK/STORK 2.0 Framework

The STORK framework – enabling secure eID federation across European countries – has been
designed to be the dominant identification and authentication framework across Europe in the
future. The project is based on two lines of thoughts on how an interoperability framework
can be build: In the first approach, the service provider integrates all foreign eID tokens using
a middleware. We refer to this approach as “middleware model”. In the second approach,
cross-border eID transactions are delegated to a national gateway – a proxy – that hides the
specifics of national eID tokens and infrastructure from other countries. We refer to this as
“proxy model”. This can easily lead to scalability issues, especially for the proxy-based (PEPS)
approach in STORK, which relies on a central gateway being responsible for managing and
handling citizen authentications.

Middleware Model

The middleware model of STORK framework can be described as follow: A citizen directly
authenticates at a service provider. The citizen remains the owner of the data and the service
provider is the data controller. Identity data is usually stored on a secure token, e.g. smart
cards, and will only be released if the user gives his consent to do so, e.g. by entering a PIN.
No intermediary is in the path between the citizen and the service provider.

The “middleware model” consists of two separate software, one running on the user’s and one
running on the service provider’s system (server-side middleware – a sort of virtual identity
provider, VIDP). Generally, the client-middleware handles the communication with the secure
token and the server-side middleware. The server-side middleware is responsible for transmitting
the identity information retrieved from the token to the SP application. The “middleware
model” can ensure end-to-end security.

Proxy Model

The proxy model can be described as follows: A component called PEPS is widely used in
this scenario. This component bundles several services required for a cross-border eID solution
and hides the complexity and specifics of national solutions from other countries. The services
provided by a PEPS include the identification and authentication at identity providers, the
additional retrieval of identity attributes, or the secure transfer of the identity information to
service providers (SP).

Steps involved in the scenario are the following: A citizen from a PEPS country wants to
authenticate at a service provider in another PEPS country. The SP delegates the authentication
process to its S-PEPS which in turn forwards the request to the citizen’s origin C-PEPS. The

215

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

C-PEPS triggers the actual authentication process with the user by invoking the appropriate
identity and attribute provider (this can involve user in a sort of “IdP selection” if more than one
national IdP are available). If authentication is successful, the C-PEPS assembles a so-called
SAML assertion containing the requested identity data, wraps it into a SAML Response message
and returns it to the S-PEPS. The S-PEPS verifies the assertion and forwards the citizen to the
SP that grants or denies access to the requested resource. Following the point-to-point trust
relationship, the messages are validated at each receiver, re-signed and forwarded to the next
component. As depicted in Figures 46a and 46b, an Italian citizen tries to access a Swedish
service provider.

(a) Request (b) Response

Figure 46: STORK Process

Note that: Authentication scheme between C-PEPS and national IdP can be proprietary; S-
PEPS is responsible for SAML 2.0 assertion creation; During SAML 2.0 assertion creation,
S-PEPS uses well defined tags, in order to assure interoperability. The use of STORK/STORK
2.0 Framework, mostly “proxy model” section, is an essential part of LISPA e-Gov pilot, in
order to assure cross-border interoperability between SP and IdP located in different countries.

E.6 eIDAS Interoperability Framework

eIDAS interoperability Framework can be simplified as an extension and a “modern” general-
ization of the core of STORK Framework.

First of all, we need to identify the actors which join eIDAS-Network - which is made of eIDAS-
nodes. The main components of the eIDAS-Network are: Firstly, the relying party (i.e. a
SP), which requires authenticity/integrity of the received personal identification data. Also,
in order to fulfill the data protection obligations, it requires confidentiality of the received
personal identification data. Secondly, the citizen, who expects confidentiality of his personal
identification data.

Within the eIDAS Interoperability Framework, communication between eIDAS-nodes (i.e. eIDAS-
Services and eIDAS-Connectors) is performed via the citizen’s browser. Here, the content of
the communication between eIDAS nodes is performed using cryptographically protected SAML
messages. To secure the transport layer of this communication between these components and
the citizen’s browser, a recent version of TLS is used.

216

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Several Member States (MB) can join eIDAS Network, so cross-border interoperability is a
major goal. Interoperability between different eID-schemes is achieved via defining the technical
interfaces between eIDAS-Connectors and eIDAS-Services, collectively eIDAS-Nodes. Sending
Member State can choose between two integration scenarios for their eID-scheme; they are
derived from STORK/STORK2 Framework and are the following:

• Proxy-based: The Sending Member State operates an eIDAS-Proxy-Service, relaying au-
thentication requests and authentication assertions between an eIDAS-Connector operated
by the Receiving Member State and the eID scheme of the Sending MS.

• Middleware-based: In this scenario the Sending MS does not operate a Proxy for the
purpose of authentication of persons to relying parties of other MS. The Sending MS
provides a Middleware to other MS, which is operated by the operator(s) of the eID-
Connector(s) of the Receiving MS.

Each Receiving Member State shall operate one or more eIDAS-Connectors. It is up to the
Receiving Member State to decide the national deployment of Connectors. Connectors need
not to be operated by the Member State itself, but can also be operated by public and/or
private relying parties established in that Member State. Typically, MSs operating exactly one
Connector are called Centralized MSs (analog to C-PEPS in STORK scenario – see figure below),
while MSs operating several Connectors are called Decentralized MSs. An eIDAS-Connector is
operated together with eIDAS-Middleware-Services for communication with middleware-based
eID schemes. Italian eID project SPID is an example of IdP federation compliant with eIDAS
directives.

Figure 47: eIDAS

The authentication experience – from a user point of view – is very similar to STORK approach.
One of the most important change is about the concept of Level Of Assurance: if the requested
(or higher) Level of Assurance cannot be fulfilled by the eIDAS-Service, the Request must be
rejected. Another major difference is about the metadata exchange: to provide an uninter-
rupted chain of trust for authentications, as well as an uninterrupted chain of responsibility
for integrity/authenticity and confidentiality for personal identification data, Nodes must be
securely identified. This identification is made by (signed) XML metadata files. In some cases,
metadata can be cached by a party. Metadata must be verified by the parties involved in the
authentication process.

217

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

F Details for eHealth Technologies

Healthcare organizations are rather productive in defining healthcare specific standards for
healthcare specific issues such as medical content structuring and encoding. Nevertheless, when
it comes to more generic functionalities such as data sharing and security, there is a strong
tendency to adopt existing standards to the specific needs of healthcare use cases. This adaption
is usually referred to as “profiling” with the resulting “profiles” defining constraints on existing
standards in order to foster interoperability when using these standards in healthcare.

Figure 48: Prominent Standardization Bodies

Figure 48 sketches some of the most prominent standardization bodies and profiling initiatives
which are relevant for healthcare-IT:

• Especially in the domain of mobile health and medical devices healthcare-IT adapts ex-
isting ISO standards (i.e. ISO/IEEE 11073).

• HL7 is most prominent SDO that solely focusses on healthcare. HL7 standards range
from content representation formats to permission catalogues. Through a co-operation
with ANSI some HL7 standards are as well ISO norms.

• IHTSDO is a non-for-profit organization that releases the most comprehensive terminology
in healthcare which is about to substitute many of the existing specialized terminologies.

• IHE (Integrating the Healthcare Enterprise) defines profiles on existing standards which
allow implementing eHealth use cases using existing COTS. Typical origins of IHE profiles
are HL7 (e.g. document type specifications), OASIS (e.g. ebXML-based sharing of health
data) and DICOM (radiology).

• Continua Alliance is another profiling organization that defines interoperability profiles
for medical devices on top of ISO/IEEE 11073. Continua Alliance as well provides a
reference architecture for connecting personal health devices to health records by using
IHE profiles.

218

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• epSOS is an example for an initiative (European FP7 LSP project) that further profiled
existing IHE profiles. By this existing international profiles are further constrained to
common European requirements (e.g. as derived from the data protection directive) and
to cross-border sharing of health data.

In the following sections some established healthcare-IT standards and profiles are sketched
which either may be relevant for CREDENTIAL or even shall be considered for the CREDEN-
TIAL eHealth use case due to their wide acceptance with vendors and clinics.

F.1 Health Information Exchange

This section describes document exchange protocols. It covers basic protocols for sharing med-
ical data as well as protocols for exchanging metadata like patient and healthcare professional
identifiers.

F.1.1 Cross-Enterprise Document Sharing (XDS)

The IHE profile “Cross-Enterprise Document Sharing (XDS)” defines interfaces, metadata and
data flow protocols for sharing medical documents among healthcare professionals [94]. IHE
XDS builds upon the OASIS ebXML standard and provides a specific configuration and de-
ployment of this standard’s components to reflect typical use case within regional healthcare
networks.

Actors and Transactions

Figure 49 sketches the actors (logical building blocks) and transactions (services) as defined by
IHE XDS.

HE XDS implements the ebXML separation of a document registry and a document repository
while integrating these with further building blocks:

• The Document Registry takes responsibility for the management of document metadata
and provides services for document query and registration

• The Document Repository implements a content-agnostic store for medical documents. It
provides services for storing documents (which will then be registered at the Document
Registry by the Document Repository) and for retrieving a set of identified documents.

• The Document Source actor is the origin of medical documents that are shared through
IHE XDS. IHE XDS defines two different flavors of sources: (Static) Document Sources
that upload copies of locally managed document to the XDS Document Repository and
On-Demand Document Sources which generate documents on demand out of whatever
kind of patient data (e. g. generating a lab report from a clinical database).

219

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 49: IHE XDS Actors and Transactions (from IHE ITI TF-1)

• The Patient Identity Source takes responsibility for announcing new patient identifiers to
the XDS Document Registry (e.g. when a patient is admitted to a hospital) and provides
the connected systems with information about patient ID related events (e.g. it had been
discovered that a patient was a duplicate to an already registered patient).

• The Document Consumer actor is implemented by any component that utilizes document
sharing services of the Document Repository and Document Registry.

The data model implemented by IHE XDS consists of five major kinds of entities:

• DocumentEntry ebXML registry objects capsule the metadata associated to a medical
document. These metadata reflect the author, affected patient and creation context of
the document together with some technical information such as the document file size and
a hash value.

• Each DocumentEntry refers to a medical document that is treated by IHE XDS as a
BLOB.

• Medical data is provided to a Repository as a SubmissionSet registry object which cap-
sules a set of medical documents together with their belonging DocumentEntry objects.
SubmissionSets have metadata of their own and cannot be modified after they have been
uploaded to the Document Registry.

• Folder registry objects allow bracing a set of DocumentEntry objects. In XDS folders
cannot be nested. Nevertheless, any DocumentEntry can be a member to multiple folders.

220

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

As DocumentEntries, Folder objects can only be registered to the Document Registry as
part of a SubmissionSet.

• Relationships among objects are always explicit. They are expressed through Association
registry objects that link one object to another. The most important kind of relationship
is the hasMember-association which places DocumentEntries into SubmissionSets and/or
Folders. Figure 50 sketches which Associations need to be explicitly defined to upload a
single DocumentEntry within a single Folder into a single SubmissionSet. For making the
lifecycle of documents visible, documentEntries may be linked to other document entries
using Associations for document replacement, document transformation and document
addendum.

Figure 50: IHE XDS Registry Objects [IHE ITI TF-3]

Use Cases and Functional Features

IHE XDS actors implement an Affinity Domain. An Affinity Domain is made up from a single
Document Registry and one or more Document Repositories. This e. g. allows for scenar-
ios where medical data is stored within hospitals while the Document Registry implements a
centrally accessible service for discovering requested data within these decentralized Document
Repositories. In addition, the organizations working together in an Affinity Domain have to
agree on common means for patient identification, network security, provider identification,
document metadata details, data formats, etc.

A typical use case for such an Affinity Domain is a regional care network, where e.g. a community
hospital operates a central Document Registry to enable sharing of medical documents among all
participants of the care network. By using Associations between DocumentEntry objects and by
manipulating document metadata, functionalities for updating and invalidating documents can
be implemented on top of the core services for uploading, searching and downloading documents.
This as well is the strength of XDS; it focuses on core services for a Health Information Exchange

221

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

among co-operating organizations which in advance defined common rules on how they want to
share data.

Nevertheless, with every installation of XDS, new demands for enhanced features are coming
up. IHE serves these requests not only by continuously adjusting the core of XDS but as well
by specifying additional functionalities as separate profiles which may even define additional
actors and transactions. Among these profiles are:

• Cross-Community Access (XCA): XDS is restricted to sharing data within a single Affinity
Domain. Nevertheless, patients may visit doctors which across such rather artificially
domain boundaries. For such settings the IHE XDS profile defines gateways for mediating
data query and retrieval across Affinity Domains

• Document Metadata Subscription (DSUB): A common use case for XDS is to enable the
sharing of data that is needed by the participating organization in cases of admission-
discharge and referral / re-referral care sequences. In such setting doctors may want to
receive automatic notification if a needed document for an identified is made available
or if addenda had been added to a formerly retrieved document. The IHE DSUB profile
provides actors and transactions that allow doctors to subscribe to events and to receive
notification in case that event takes place.

• XDS-i: This profile provides an integration of XDS paradigms and services with the
DICOM protocol which is the established international standard for sharing image data.

• Mobile Access to Health Documents (MHD): Being based on ebXML, XDS messages are
very verbose and by this rather unsuitable for document consumer and source actors
which are located on mobile devices. The recently published MHD profile defines actors
and transactions for capsuling an XDS infrastructures by a RESTful proxy that can be
connected through JSON and FHIR by mobile devices.

Relevance

IHE XDS is the de facto healthcare-IT standard for record based infrastructures. It is widely
used worldwide and has broad support from healthcare-IT-vendors. In Europe many health
information exchange networks build upon IHE XDS and most of the public tenders for such
networks request for IHE XDS as the base standard. The following list gives some of the most
prominent XDS activities in Europe:

• Elektronische Gesundheitsakte ELGA (Austria): The Austrian national eHealth infras-
tructure is made up from multiple, interconnected IHE Affinity Domains. It went opera-
tional in December 2015.

• Electronic CaseRecord EFA (Germany): EFA is a specific configuration of IHE XDS
that pays specific attention to European Privacy legislation. Seven IHE XDS vendor
implementations have been successfully tested for EFA compatibility at the IHE European
Connectathon 2016.

222

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• European Patients Smart Open Services epSOS (European Commission): epSOS defines
means for transcoding and translating medical documents while sharing them across bor-
ders through IHE XCA gateways (with the relevant transactions being more or less iden-
tical to the IHE XDS Registry Stored Query and Retrieve Document Set transactions).

Consideration for CREDENTIAL eHealth Pilot

The CREDENTIAL eHealth pilot shall use an IHE XDS compliant backend for managing
medical data. Only this ensures that the solution can be properly integrated with existing
infrastructures and data flows in healthcare-IT.

IHE XDS is security agnostic by only defining business level transactions. Therefore, IHE XDS
actors may be capsuled by CREDENTIAL security proxies for safeguarding access to medical
data within an XDS registry/repository. The IHE MHD profile gives an idea how this could be
implemented.

A specific of IHE XDS that needs to be considered by CREDENTIAL is that a document
consumer needs to first query the Document Registry for requested documents through a search
on document metadata. In the second step the discovered documents can be retrieved by
providing their document IDs to the Document Repository. This imposes some issues that need
to be solved by CREDENTIAL in order to not weaken CREDENTIAL’s high level of privacy
on the application level:

• Information in IHE XDS document and submission set metadata discloses (too) much
protected information about the patient. E. g. as XDS allows querying for documents by
document type, each DocumentEntry holds the document type together with the patient
identifier. In many cases, knowing that a specific type of a document has been created for
a patient, discloses which procedure the patient has undergone or with suspect diagnose
leaded to that specific report. CREDENTIAL needs to carefully assess if pseudonymiza-
tion, metadata hiding, metadata encryption or any combination of these is sufficient to
protect the patient’s privacy while not requiring users to always download the full set of
documents for a patient in order to find a single document that could have been easily
discovered by a metadata search.

• The request message for retrieving a set of documents does not contain any patient ID, just
the IDs of the requested documents. CREDENTIAL needs to define means for enforcing
the patient’s privacy policy on such a request in an efficient yet secure manner.

Given the diversity of objects defined by XDS for managing medical data and the rather com-
plex integration of these objects, CREDENTIAL must carefully consider that any extension or
modification on XDS transactions may have impact on the consistency of the document store.
E.g. XDS defines clear rules on how e.g. an update to a document that has an addendum
shall be performed and how a document query must deal with such a cluster of related docu-
ments. Encrypting too much information may hinder XDS implementations in automatically
performing the required processing of such operations.

223

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

F.1.2 Patient Identifier Cross-Referencing (PIX) & Patient Demographics Query
(PDQ)

A common problem in healthcare IT is that the same patient is registered with different iden-
tifiers at different care providers and IT-systems. This not only holds for cross-enterprise use
cases (e.g. a hospital and a resident physician referencing the same patient using different IDs)
but even within enterprises (e.g. radiology systems introducing their own patient IDs). IHE
defines two integration profiles that deal with such problems:

• Patient Demographics Query (PDQ) defines actors and transactions for discovering
a patient identifier from known demographics (e.g. name, date of birth). The profile as
well covers scenarios, where manual intervention is needed because available demographics
are not sufficient for univocally identifying a patient.

• Patient Identifier Cross-referencing (PIX) defines actors and transactions for linking
identifiers of the same patient across multiple enterprises. By this data about the same
patient from different systems can be correlated.

Vendors usually provide Patient ID Management solutions (e.g. Master Patient Indices for
hospitals and regional care networks) that implement both profiles as typical use cases require
a very close integration of ID discovery (PDQ) and ID matching (PIX).

Actors and Transactions

In hospitals most IT systems communicate through HL7v2 messages with each other. Whenever
an event occurs (e.g. a patient has been admitted or moved to another room, a document has
been released or revoked, a lab has been ordered) the system that triggered or captured that
event sends out an HL7v2 message to a defined address. This address is usually a communication
server that accepts the message and forwards it to all connected systems that may be affected
by the event. HL7v2 is based on the EDI standard that separates messages into segments and
fields using pipes and roofs as delimiters.

The IHE PIX profile specifies actors and transaction that enable a hospital or care network to
synchronize patient identifiers from different devices and organizations based on such events.
Among these events are

• A patient is admitted at a care organization where an identifier is assigned to that patient.
Usually multiple identifiers are assigned, e.g. to differentiate between the patient and the
visit.

• Patient data (e.g. address) changed.

• At admission it was not recognized that an identifier was already assigned to the patient
so that the patient now has two files under different IDs. Through an event connected
systems are advised to merge two identifiers into one.

224

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 51 sketches the actors (logical components) and transactions (services) as defined by the
IHE PIX integration profile.

Figure 51: IHE Actors and Transactions

Patient-ID related messages as the ones sketched above are called Patient Identity Feeds. Sys-
tems that trigger these events act as Patient Identity Sources. Identity sources shall send
all patient-ID relevant events to a central Patient Identifier Cross-reference Manager, which
accepts the information within these events and assembles a cross-reference table. The cross-
reference table records the identifier each patient is assigned in each identity domain (patient-ID
managing system/organization). Using the PIX Query transaction, client systems as Patient
Identifier Cross-reference Consumers can query for the ID that is assigned to the patient in a
given domain.

Closely related to the PIX profile is the Patient Demographics Query (PDQ) profile which
defines a service for querying for a patient identifier by demographic data. The major difference
to PIX Query is that a PIX Query demands for a domain patient ID as input while PDQ also
works solely on demographics. In addition, the PDQ Patient Demographics Supplier usually
implements sophisticated algorithms to cope with slightly wrong-spelled names or to discover
the ID of a person even if that person had married and changed her name.

Use Cases and Functional Features

A network of cooperating doctors – as will be set up for the CREDENTIAL eHealth demonstra-
tor – cannot be set up without having PIX and PDQ services available. Even in countries were
all citizens are assigned a national (healthcare) ID, patients may have forgotten their respective
ID cards or are unable to show these. Therefore, such networks usually operate a single Master
Patient Index based on PIX and PDQ services that allow each doctor to:

• Register the identifiers he uses for the participating patients.

• Obtain the identifier a cooperating doctor uses for the same patient.

• Obtain a domain PID for the patient that shall be known to all doctors.

225

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

The latest functionality is very important, because data managing systems like an IHE XDS
Document Registry usually only allow for a single, unique identifier per patient. Therefore, a
new patient ID is generated and PIX used for mapping the care organizations’ local patient
IDs onto this domain PID. Data Source and Consumer actors in hospitals and practices au-
tomatically connect to the Affinity Domains Patient Identifier Cross-reference Manager before
connecting to the XDS health record in order to map the local patient ID onto the patient ID
used by the XDS Affinity Domain.

In order to better serve such cross-enterprise use cases, IHE has released HL7v3-versions of the
PIX and PDQ profiles which are based on XML instead of EDI. For CREDENTIAL only the
versions of the profiles will be considered.

Relevance

IHE PIX/PDQ is the de facto standard for managing patient identifiers in cross-enterprise
use cases. It interplays well with IHE XDS and is supported by most of the existing health
record solutions (commercial and open source). Therefore, CREDENTIAL identity management
components shall be able to cope with IHE PIX/PDQ actors and transactions for the eHealth
use case. In case that CREDENTIAL eHealth use case introduces additional IDs for patients,
IHE PIX compliant Patient Identifier Cross-reference Manager shall be used to match these
with existing patient identifiers.

Considerations for CREDENTIAL eHealth Pilot

The use cases defined for the CREDENTIAL eHealth Pilot require several care organizations to
share medical data about the same patient. In addition, the patient himself and personal health
devices may contribute data. While the central CRENDENTIAL data managing infrastructure
will accept only a single unique patient ID for linking all patient data, the distributed data
sources and consumers will operate on their own ID management. E.g. a fitness tracking device
will not be aware of the patient at all and only place its device identifier as a unique key into
each data set.

In CREDENTIAL a Patient Identifier Cross-reference Manager will be deployed as a core com-
ponent of the Personal Health record infrastructure. It takes responsibility for maintaining a
central Patient Identifier Cross-reference table. This imposes several challenges with respect to
patient privacy, as the defined IHE messages for registering patient identifiers are directly de-
rived from hospitals’ internal events and therefore disclose much information about the patient,
his environment and reasons for coming to hospital. Therefore, CREDENTIAL will take over
the general protocol patterns of IHE PIXv3 but define its own data set for patient registration
and patient ID query. This will in particular consider personal device identifiers as additional
IDs to be linked with a patient.

The CREDENTIAL use case analysis identified a need for a PDQ-alike functionality: For send-
ing event notifications to the patient (e.g. someone provided a new document) the CREDEN-
TIAL notification service needs to obtain contact data for the patient. In addition, there may
even be scenarios where a patient advised that such notifications should be send to a relative

226

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

who takes care of the patient. All this information (relatives, contact data, etc.) is typically pro-
vided through a Patient Demographics Supplier. Therefore, a respective component will be set
up for CREDENTIAL as part of the notification subsystem. Ideally this component only acts as
a proxy to the common CREDENTIAL Participant Index and just provides a healthcare-aware
API that wraps the existing CREDENTIAL Participant Search Service. In this deployment the
common CREDENTIAL Participant Registration Service can be fully re-used for the eHealth
pilot.

F.1.3 Audit Trail and Node Authentication (ATNA)

IHE recommends that every Affinity Domain (see section on IHE XDS) shall implement four
baseline security means:

1. All hosts within the domain are able to mutually authenticate each other. Successful
mutual node authentication is a prerequisite for any access to protected data.

2. The host identification is used to determine which data is accessible to automated processes
on that host, and/or persons under the direction of that host’s access controls. This
considers that many systems provide pre-fetching mechanisms for synchronizing local and
shared data over night so that medical data is available to doctors when needed.

3. The node that hosts protected data is responsible for reasonable access controls, including
user authentication and authorization.

4. Every access to protected data and every other security related event is logged to a secure
audit protocol. There may be scenarios (e.g. emergency access) where only a log is written
without prior access control.

Hosts that implement all these mechanisms for the full software stack on a machine are called
Secure Nodes in the IHE nomenclature. Products that implement these mechanisms – but rely
on the underlying operating system, database, etc. to be protected as well – are called Secure
Applications.

While mechanisms 1-3 are either within the core scope of CREDENTIAL or part of the common
CREDENTIAL security infrastructure, the need for an audit trail is a rather specific for the
CREDENTIAL eHealth pilot.

Actors and Transactions

The IHE Audit Trail and Node Authentication (ATNA) integration profile defines actors (com-
ponents) and transactions (services) for setting up secure domains based on mutual node au-
thentication an audit logs.

IHE Node Authentication defines specific configurations of the TLS and S/MIME protocols that
ensure a unique level of security and interoperability in connecting communicating nodes. As

227

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 52: IHE Audit Trail and Node Authentication (ATNA)

IHE ATNA is still based on TLSv1.0, this part of the profile will not be used for CREDENTIAL
which builds upon TLSv1.2 as a baseline for transport layer security. Therefore, the focus for
the rest of this section will be on the Record Audit Event transaction and the Audit Repository
Actor.

IHE ATNA audit messages are based on the respective specifications from the DICOM stan-
dard which again are based on the – now deprecated – RFC 3881 “Security Audit and Access
Accountability Message - XML Data Definitions for Healthcare Applications”. The figure below
sketches the core information model of a single audit trail entry that is sent as a message to the
Audit Repository.

Figure 53: Five Major Building Blocks of the Message

The five major building blocks of the message give answers to the most relevant questions when
non-repudiation of an activity is requested:

• Event Identification: What activity has been performed?

228

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Active Participant Identification: Which actors (humans and/or IT-services) performed
the activity?

• Network Access Point Identification: Which technical systems was the originator of the
event?

• Audit Source Identification: Which system requested that an audit trail entry is written
for the event (e.g. the service that accepted the event and released protected data in
response to the event)?

• Participant Object Identification: Which resources where subject to the event?

The Audit Repository takes responsibility that all reported events are logged in a secure way.
This includes mechanisms to protect the integrity and confidentiality of the audit log. In
particular, there must be mechanisms in place to prevent any manipulation of a once written
audit trail.

Use Cases and Functional Features

Writing an audit trail entry is part of almost all business use within a health information
exchange. Ever access to medical data is to be logged as well as security related events such as
the issuance of an assertion or the grant of an access permission.

While IHE originally only specified how data is pushed into an audit trail using reliable sys-
log, the recently published profile “Add RESTful Query to ATNA” adds a further actor and
transactions for securely reading data from an audit trail repository through a defined REST
interface.

Relevance

Non-Repudiation is a rather rigid requirement for most eHealth use cases (including the ones
specified for CREDENTIAL). IHE ATNA is the most elaborated profile on top of RFC3881
which again is the only standard in this respect that gained wider acceptance.

Therefore, an ATNA compliant audit trail repository shall be considered as a required compo-
nent for the implementation of the CREDENTIAL eHealth use case.

Considerations for CREDENTIAL eHealth Pilot

IHE ATNA does not define normative means for safeguarding audit trail entries. Nevertheless, it
will be a rigid requirement for CREDENTIAL to fully protect the integrity and confidentiality
of the audit trail as otherwise this would impose a weak spot to the overall CREDENTIAL
security shield.

For the eHealth pilot it shall be investigated if cryptographic means defined by CREDENTIAL
are applicable to ATNA audit trails for technically protecting the confidentiality and authentic-
ity of audit trail entries. One solution could be to encrypt the critical parts of all audit messages

229

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

for the affected patient. Patients could then grant trusted persons access to their audit data
(e.g. privacy commissioners) through proxy-reencrypting that data for these persons.

F.1.4 Cross-Enterprise User Assertion (XUA) & Cross-Enterprise User Assertion
- Attribute Extension (XUA++)

IHE XUA is a profile on OASIS SAML v2.0 that defines constraints on the SAML assertion
format and on the use of attribute statements. The flow of control is only roughly sketched and
implements a specific integration of SAML and WS Trust. The only part that is normative for
conformance to the XUA profile is the provisioning of a conformant SAML Identity Assertion
to a Service Provider within a SOAP message header (see Figure 54).

Figure 54: Flow of Control

Options and Definitions on Attribute Statements

The major purpose of the XUA profile is to take up the increasing use of federated authentication
in healthcare-IT projects and to define useful constraints in order to make SAML aware systems
of different vendors interoperable.

For this several SAML elements and attribute definitions are constrained:

• Sender-vouches subject confirmation method is not allowed. Bearer is considered as a
default (assuming that ATNA compliant TLS transport layer security is used).

• An AudienceRestriction shall be provided. It shall either refer to the URI of an Affinity
Domain (see section on IHE XDS) or the URI of the service that is requested.

• Subject ID and Subject Organization attributes shall include plain text names of the user
and the organization.

• Only assertions which are digitally signed by the issuer are accepted.

230

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

In addition, XUA specifies various options which implementers may support. Even though
CREDENTIAL may decide to not support these options, CREDENTIAL shall not specify the
same semantic in a way that is not compliant to these XUA options.

The Subject-Role option defines how a subject’s role is to be encoded as an attribute statement.
The most relevant constraints include the use of a defined name and namespace which enforce
the use of HL7 data types and SNOMED CT for encoding role values. The following example
from [IHE ITI TF-2b] shows how a XUA-compliant role attribute looks like:
<saml : Att r ibute Name="urn : o a s i s : names : tc : xacml : 2 . 0 : sub j e c t : r o l e ">

<saml : Attr ibuteValue>
<Role xmlns="urn : hl7−org : v3 " x s i : type="CE" code="46255001"

codeSystem ="2 . 1 6 . 8 4 0 . 1 . 1 1 3883 . 6 . 9 6 " codeSystemName="SNOMED_CT"
displayName="Pharmacist "/>

</saml : Attr ibuteValue>
</saml : Attr ibute>

The patient ID may be provided as a resource ID within a SAML attribute statement. If this
option is implemented, the HL7v2 CX data type must be used for encoding the patient ID and
its assigning authority:
<saml : Att r ibute Name="urn : o a s i s : names : tc : xacml : 2 . 0 : r e s ou r c e : re source−id ">

<saml : Attr ibuteValue >543797436^^^&1 . 2 . 8 40 . 1 13619 . 6 . 1 97& ; ISO
</saml : Attr ibuteValue>

</saml : Attr ibute>

Relevance

Role- or Attribute Based Access Control in healthcare requires the definition of constraints
on the use of subject attributes and resource attributes if systems from different vendors are
required to be interoperable. Given the low adoption rate of international standards within
the different sectors and the high diversity of standards across sectors this is a tough challenge.
This the more as information from identity assertions issued by one system need to be written
to audit trails by another system in a way that long-term understandability pf this information
can be guaranteed.

Considerations for CREDENTIAL eHealth Pilot

The CREDENTIAL Identity Provider service set up and configured for the CREDENTIAL
eHealth pilot shall only issue XUA compliant assertions. The respective constraints should not
be that severe considering that CREDENTIAL proxy re-encryption implies a DAC-style access
control model which only requires subject and organization IDs for enforcing policies. As XUA
defines healthcare specific attribute names for these attributes, there will be no conflicts with
semantically equivalent attribute definitions from other domains.

231

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

F.1.5 IHE Advanced Patient Privacy Consent (APPC)

The collection, use and/or processing of personal health information is only legitimate if either
requested by legislation or authorized through a freely given, informed consent of the individual
concerned. This rule is one of the core principles of the European privacy directive [Directive
95/46/EC] and basis of all derived European national privacy legislations.

In eHealth and telemedicine, a patient consent guarantees the individual’s civil rights, strength-
ens her informational self-determination and provides the data processor with the legal basis
for collecting, using and processing personal health information.

The existing decoupling of written consents and electronically enforceable permissions has some
obstacles especially in larger settings, where multiple eHealth services are operated and where
consents need to be adapted to specific and individual care scenarios. The IHE Advances
Patient Privacy Consent (APPC) integration profile defines how to express a patient’s consent
as a machine processable privacy policy. This allows for a continuous flow of authorization
information, where a patient’s given consent can be translated into machine processable rules
that are enforced whenever that patient’s personal health data is processed by an electronic
service that is governed by that consent.

Contents and Encoding

An Advanced Patient Privacy Policy allows for expressing all information that is required to be
governed through a consent:

• Individual whose health information is protected by the policy (subject of consent): This
individual can be univocally identified through a machine readable, registered ID.

• Resources that are protected by the policy (target of consent): These resources may either
be identified through their unique identifiers or through resource attribute filters (e.g. type
of resource, healthcare event associated with resource). Resource attributes used within a
patient privacy policy shall be univocally defined and identified and the processing system
shall be able to discover all resources that match the given attribute filters.

• Individuals and organizations that are authorized to collect, use and/or process the pro-
tected resources: These organizations and individuals may either be identified through
their unique identifiers or through entity attribute filters (e.g. administrative role, class of
healthcare entity). Entity attributes used within a policy shall be univocally defined and
identified and the processing system shall be able to decide whether a resource requestor
matches the given attribute filters

APPC is specified as a profile on the OASIS eXtensible Access Control Language (XACML) by
imposing constraints on the structure of XACML policies and by restricting the set of attributes
that may be used for expressing these policies. Such restrictions allow for a seamless interplay of
XDS, XUA and APPC. E. g. by this the policy processing services are able to match authorized

232

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

organizations or individuals who are identified by their IDs with the ID of the resource requestor
as provided with the request through an XUA compliant identity assertion.

Considerations for CREDENTIAL eHealth Pilot

CREDENTIAL requires that patients who participate in the eHealth pilot give written consent
to their doctor before any data is collected or processed within the context of CREDENTIAL.
This consent will be given on paper and it will be signed with the patient’s wet signature. For
making the patient’s will processable in CREDENTIAL the doctor will document the relevant
consent information electronically. It shall be assessed if pure APPC is sufficient or if a wrapper
will be needed (e.g. a XML document where the APPC is embedded).

The other scenario where APPC may be helpful is the ad-hoc-authorization of physicians, e.g.
for one-time access to the health record or for assigning them a role within the care team. If
such an authorization is capsuled as an access policy, APPC shall be considered as a good basis
for gaining technical and semantic interoperability across all means that may be used for ad-hoc
authorization.

F.1.6 Document Digital Signature (DSG)

IHE Document Digital Signature (DSG) specifies how digital signatures of medical documents
are used while they are shared across multiple organizations. The profile supports three different
methods for digital signature. An enveloped signature is a signature which is packed along with
the document content itself. A detached signature is a signature with a reference to the signed
document content. A submission set signature is a detached signature which points to a set of
documents that are signed by this signature.

Figure 55: DSG Actor Model

DSG uses a two actor model as described in Figure 55. The Content Creator is the entity who
creates a digital signature document. On the other side the Content Consumer is the entity
who is responsible to verify the signature of those documents. The documents are shared from
the Content Creator to the Content Consumer.

The goal of DSG is to establish document integrity. The signature is used to guarantee that
the signed document is not modified by error or intent and to vouch for the identity of the
signer. In addition, a practical use case would be to verify the clinical content of a document
by a practitioner.

The Document Consumer can perform the following operations:

233

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

• Search for signatures of a document: With this operation a Document Consumer is in
possession of a document and needs to find the document’s signature.

• Search for documents of a signature: The signature contains a reference to the document(s)
that are signed by it. Thus the Document Consumer is able to search for these documents.

• Search signatures: Signature can be queries by time range, specific participant, signature
purpose, etc.

• Ignore signature in document query: If only the source document is needed, the Document
Consumer can suppress the document signature.

Considerations for CREDENTIAL eHealth Pilot

DSG shall be used as a guidance about how document signature may be integrated with typical
health data sharing scenarios.

It is still possible to use different XAdES profile, hashing algorithms, policy identifiers, or
signature purpose vocabulary. CREDENTIAL opportunities for processing signed data may
impose additional requirements on DSG implementations.

F.1.7 Document Encryption (DEN)

IHE DEN is a profile on IETF Cryptographic Message Syntax (CMS). It defines how health
data shall be encrypted for transmission and storage. By this DEN supports the notion of end-
to-end encryption where medical data is only disclosed to the creator and consumer of medical
content while all intermediary actors may only process encrypted content.

Considerations for CREDENTIAL eHealth Pilot

HE DEN shall be used as guidance about how data encryption may be integrated with typical
health data sharing scenarios. Especially definitions about how encrypted data is to be handled
in conjunction with other healthcare-IT standards should be considered. While keeping the
overall DEN flow of control and data, CREDENTIAL may define its own protocols and mecha-
nisms for medical data encryption. CREDENTIAL opportunities for processing encrypted data
may impose additional requirements on DEN implementations.

F.2 Clinical Content Representation

This section describes the two standards for defining medical documents. First, the Clinical
Document Architecture (CDA) is introduced. Second, the Fast Healthcare Interoperability
Resources (FHIR) standard is explained.

234

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

F.2.1 Clinical Document Architecture (CDA)

Clinical Document Architecture (CDA) is a HL7 standard for structured markup language in
clinical documents. It is expressed in an XML-encoded format and can contain text, images,
sounds, and other content. A CDA uses the HL7 Reference Model [89] to represent the docu-
ment’s content and achieve a machine processable meaning.

A CDA document has a hierarchical structure with the following elements:

• Clinical Document: The root element of a CDA. It contains a CDA Header and a Struc-
tured Body.

• CDA Header: The header contains meta-information about the medical document. It
identifies the participants who are involved in this document and which roles they hold.
Relationships between other documents are described.

• Structured Body: The body can be an unstructured blob or a structured document. Every
CDA has exactly one structured body. A body can have multiple sections which are used
to organize the document.

The main focus of a CDA document is an authenticated, human readable form of medical
documents which can be transmitted from a sender to a receiver. The human readability
is achieved through three different levels. In level 1, only text, images, and similar media
information is contained inside a CDA. By using level 2, structured XML information is added
to a document. Level 3 is a complete machine interpretable form of the medical document
which is conform to the CDA-RIM specification.

F.2.2 Fast Healthcare Interoperability Resources (FHIR)

For better reflecting recent tendencies in healthcare IT such as mobile health devices, REST
service interfaces and the use of web standards (e.g. JSON, OAuth) the HL7 standardization
organization developed from scratch a new standard for sharing health data. This standard,
named Fast Healthcare Interoperability Resources (FHIR), builds upon modular resource def-
initions (e.g. “patient”, “care plan”, “medication”) that can be easily combined to implement
arbitrary complex and interoperable information objects. Resource definitions themselves build
upon a small set of primitive types that again can be combined into complex types such as
codeable concepts or identifiers which are bound to a specific semantics.

A strong focus of FHIR is on implementability and reduction of complexity. Each resource
definition is specified based on abstract data types and comes with normative bindings to
XML and JSON. FHIR follows the approach to consider a clinical information as a network of
connected resources which may be managed independently and follow their own lifecycle.

235

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 56: FHIR Primitive Types [from FHIR homepage]

Considerations for CREDENTIAL eHealth Pilot

For the CREDENTIAL eHealth pilot FHIR shall be the first option of choice for representing
medical documents and data sharing among professionals. In addition, FHIR will be used as
the external representation format for terminologies, value sets and concepts (see next section
on CTS2).

Data provided by the patient will almost be time series of sensor data. HL7 FHIR only provides
rudimentary support for such kind of data and does not well integrate with data base systems
which are optimized for managing and processing that kind of data. Therefore, CREDENTIAL
will use more optimized formats for sharing time series data.

F.3 Outline

This chapter explained the various types of eHealth standards that are relevant for the eHealth
pilot. The technologies were categorized in two clusters clinical content representation and
health information exchange. With health information exchange we covered the main standards
in the eHealth domain that are used for sharing medical data across healthcare professionals.
With respect to these standards we are able to integrate an eHealth solution easily with other
products and technologies. Clinical content representation fulfills the same role, except it focuses
on standardized data formats.

Most of the technologies are mandatory for the eHealth pilot and should simply be used because
they are the de facto standard. Nevertheless, the technology analysis for CDA and FHIR will
be made, since they are competitive standards.

236

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

G Details for eBusiness Technologies

The eBusiness pilot mainly uses three technologies: PEC, S/MIME and SPID. S/MIME is a
well-known, international standard, while PEC and SPID are specific to Italian scenario. SPID
is essentially an Italian implementation of eIDAS specifics about secure authentication on the
net, whereas PEC is peculiar and no similar initiatives are known outside Italy. PEC is widely
used in Italy, and since 2013 all communications among enterprises, public administration and
local/central Government must be done using PEC. In 2015, 766 million PEC messages were
managed by 25 authorized PEC providers. Those messages were exchanged among almost 8
million PEC addresses. SPID is a more recent initiatives of Italian Government, and aims to
create an ecosystem of certified Identity Providers. Every public administration and public
company is obliged to use a SPID IdP for its user authentication process at the latest in April
2018. At the date, there are five certified Identity Providers and over 1 million digital identities
have been released.

G.1 PEC (Posta Elettronica Certificata)

After two years of technical tests, during 2005 the DPR 68 (Decree of the President of the
Republic) defined the characteristics of an official electronic delivery service, named certified
electronic mail (in Italian Posta Elettronica Certificata, PEC) giving it legal value. PEC charac-
teristics are well explained in the DM November 2005 (Decree of Ministers) and in its attached
technical rules. DPR 68 established a public register of PEC providers giving to AgID public
agency selective enrollment and monitoring duties. DPR 68 stated that an e-mail is considered:

• sent when the sender’s provider, after several checks, accepts the e-mail and returns an
acceptance receipt to the sender;

• received when it is stored in the e-mail account of the receiver. Then, the receiver’s
provider returns a receipt of delivery to the sender.

PEC, compared to traditional e-mail, ensures: 1. recognition of the sender (that is to say the
mail account); 2. integrity of sent message; 3. no delivery refusal; 4. matching between the
delivery receipt and the message sent by the user. Providers are required to have a logging
system, which tracks and stores all system events for 30 months, except for the mails written
by the sender.

PEC Platform Components

Access Point (Punto di accesso): The Access Point 1. provides services to access, send and
read PEC messages, 2. provides authentication service, 3. scans for viruses in the PEC
message, 4. issues a receipt of acceptance (ricevuta di accettazione), and 5. creates the
transportation envelope for the original message.

237

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Receiving Point (Punto di ricezione): The Receiving Point 1. receives the message sent
with an address that is registered with a PEC domain, 2. checks for the source and
correctness of the PEC message, 3. issues the receipt for taking charge (ricevuta di presa
in carico), 4. envelopes incorrect messages in an Anomaly envelope (Busta di anomalia),
and 5. scans for viruses in the regular/ordinary email messages (posta ordinaria) and in
the transportation envelope received.

Delivery Point (Punto di consegna): The Delivery Point 1. delivers the message in the
recipient’s PEC mailbox, 2. checks for the source and correctness of the message, and
3. issues the receipt of delivery (ricevuta di consegna) or the Notice of non-delivery (avviso
di mancata consegna)

Acceptance Receipt (Ricevuta di accettazione): It contains the certification data and
it’s released from the Access Point when a PEC message is sent. It is signed with the
sender PEC provider’s (Gestore di posta elettronica certificata) private key.

Notice of non-acceptance (Avviso di non accettazione): It’s the notice issued when the
sender PEC provider cannot accept the incoming message. The non-acceptance cause is
written in the text of the notice. It is signed with the sender PEC provider’s private key.

Receipt for taking charge (Ricevuta di presa in carico): The receipt is issued from the
recipient’s PEC provider Receiving Point and sent to the sender’s PEC provider. It
contains certification data to be able to link it with the PEC message received It is signed
with the receipt’s PEC provider’s private key.

Delivery receipt (Ricevuta di avvenuta consegna): The Delivery point provides to the
sender the delivery receipt when the message is saved in the recipient’s mailbox. One
receipt is issued for each recipient of the message. It is signed with the recipient’s PEC
provider’s private key.

Notice of non-delivery (Avviso di mancata consegna): If the PEC provider cannot de-
liver the message, a notice of non-delivery is sent to the message sender

Original message (Messaggio originale): It’s the message sent by the PEC user before the
deliver to the Access Point. The original message is delivered to the recipient through a
transportation envelope (busta di trasporto) that contains it

Transportation envelope (Busta di trasporto): It’s the message created by the Access
Point, it contains the original message sent by the PEC user and the certification data.
It is signed with the sender’s PEC provider private key.

Anomaly envelope (Busta di anomalia): When an incorrect message or an ordinary mail
message must be delivered to a user, the PEC provider insert it in an Anomaly envelope.
The envelope is signed with the recipient’s PEC provider’s private key.

Certification Data (Dati di certificazione): A group of data that describe original mes-
sage and are certified by the sender’s PEC provider. They are delivered to the recipient
with the original message inside the transportation envelope. The data contain: times-
tamp of the sending, sender, recipient, subject, ID of the message.

238

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

PEC provider (Gestore di posta elettronica certificata): It manages one or more PEC
domains. It is the owner of the key used to sign receipt and envelopes. It cooperates with
other PEC providers to send and deliver PEC messages.

PEC providers Index (Indice dei gestori di posta elettronica certificata): An LDAP
Server containing all the PEC providers name, public keys certificates and PEC domains
managed.

PEC mailbox (Casella di posta elettronica certificata): An electronic mail mailbox de-
fined inside a PEC domain and managed by a PEC provider.

Generic Protocol Overview

The PEC system create messages (receipt, notice and envelope) in MIME format. The messages
are composed by text and some attachments, like the original message and certification data.
The message is composed in an S/MIME v3 structure signed with the private key of the PEC
provider, the certificate with the PEC provider’s public key is also put inside this structure. The
format o S/MIME used in the message signature is “multipart/signature” (.p7s) as described
in RFC 2633 § 3.4.3. Messages are transferred with a 7-bit encoding. The hashing algorithm
used is SHA256.

To be verified, the sender of the PEC message (transportation envelope) must be the same as
the one specified in the certificate of the S/MIME sign. This means that the sender of the PEC
message will be different from the one of the original message. The original message will have

From: “John Doe” <john.doe@legalmail.it>

The transportation envelop will have

From: “On behalf of: john.doe@legalmail.it” posta-certificata@legalmail.it

The PEC messages are created by the PEC providers using special headers that identify the
type of the message and give some other relevant data, like the ID of the message. The PEC
message must be always delivered within 24 hours. If a sender’s PEC provider won’t receive
a delivery receipt from the recipient’s PEC provider within 24 hours, it will issue a Notice on
non-delivery to its user (the original sender).

Interaction between two PEC providers

1a. User send an e-mail to the Access Point.

1b. Access Point return to the sender a Receipt of Acceptance.

2a. Access Point create a Transportation Envelope and forward it to the Receiving Point of
the recipient’s PEC provider.

239

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 57: Correct Transportation Envelope with Successful Delivery

2b. Receiving Point verify the Transportation Envelope and generate a Receipt for taking
charge that is forwarded to the Receiving Point of the sender’s PEC provider.

2c. Receiving Point verify the validity of the Receipt for taking charge and forward it to the
Delivery Point.

2d. Delivery Point save the Receipt for taking charge in the PEC provider store.

3. The Receiving Point forward the Transportation to the Delivery Point.

4a. Delivery Point verify the content of the Transportation Envelope and save it to the recip-
ient’s mailbox.

4b. Delivery Point create an Acceptance Receipt and forward it to the Receiving Point of the
sender’s PEC Provider.

4c. Receiving Point verify the validity of the Acceptance Receipt and forwards it to the
Delivery Point.

4d. Delivery Point save the Acceptance Receipt to the sender’s mailbox.

5. Recipients have now the e-mail sent to him.

240

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

G.2 S/MIME

S/MIME is It is a standard defined in a number of documents, most importantly RFCs 3369,
3370, 3850 and 3851, It stands for Secure/Multipurpose Internet Mail Extensions and is a
standard for public key encryption and signing of MIME data (an email message). S/MIME
allows you to: 1. Ensure to your email recipients that YOU actually sent the email 2. Allows
the possibility of sending and/or receiving email encrypted

S/MIME specifies the MIME type application/pkcs7-mime (smime-type "enveloped-data") for
data enveloping (encrypting) where the whole (prepared) MIME entity to be enveloped is en-
crypted and packed into an object which subsequently is inserted into an application/pkcs7-
mime MIME entity.

Before S/MIME can be used in any of the above applications, one must obtain and install an
individual key/certificate either from one’s in-house certificate authority (CA) or from a public
CA. The accepted best practice is to use separate private keys (and associated certificates) for
signature and for encryption.

Digital Signature

The signing operation (cf. Figure 58a) that is performed when the message is sent requires
information that can only be supplied by the sender. This information is used in a signing
operation by capturing the e-mail message and performing a signing operation on the message.
This operation produces the actual digital signature. This signature is then appended to the
e-mail message and included with the message when it is sent.

For signature verification (cf. Figure 58b) the following steps are taken: 1. The message is re-
ceived. 2. Digital signature is retrieved from the message. 3. Message is retrieved. 4. Information
identifying the sender is retrieved. 5. Signing operation is performed on the message. 6. Digi-
tal signature included with the message is compared against the digital signature produced on
receipt. 7. If the digital signatures match, the message is valid.

(a) Message Signing (b) Verifying Message Signature

Figure 58: S/MIME Signatures

241

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Encryption

Message encryption provides a solution to information disclosure. SMTP-based Internet e-mail
does not secure messages. An SMTP Internet e-mail message can be read by anyone who sees
it as it travels or views it where it is stored. These problems are addressed by S/MIME through
the use of encryption.

The encryption operation (cf. Figure 59a) that is performed when the message is sent captures
the e-mail message and encrypts it using information that is specific to the intended recipient.
The encrypted message replaces the original message, and then the message is sent to the
recipient. The following figure shows the sequence of encrypting an e-mail message.

For decryption (cf. Figure 59b) the following steps are taken: 1. The message is received.
2. Encrypted message is retrieved. 3. Information uniquely identifying the recipient is retrieved.
4. Decryption operation is performed on the encrypted message using the recipient’s unique
information to produce an unencrypted message. 5. Unencrypted message is returned to the
recipient.

(a) S/MIME Encryption (b) S/MIME Decryption

Figure 59: S/MIME Encryption

G.3 SPID

SPID is the solution that allows you to access all the online services of public administration
with a single Digital Identity. The SPID identity is formed by a pair of credentials (username
and password) through which you can access the services from any device: computer, tablet
and smartphone. There are 3 levels of SPID identity that correspond to Kantara18, each with
an increasing degree of security:

• SPID Level 1 (Kantara AL2): allows access to services with a username and password.

• SPID Level 2 (Kantara AL3): allows access to services with username, password and a
temporary access code.

• SPID Level 3 (Kantara AL4): allows access to services with username, password and
the use of an access device.

To get a digital identity SPID you have to choose an Identity Provider among those accredited
by AgID (Agency for digital Italy), then the Identity Provider must verify with certainty your
identity through digital recognition (for example with qualified digital signature) or physical
recognition (in person or with webcam recognition procedure).

18https://kantarainitiative.org/idassurance

242

https://kantarainitiative.org/idassurance

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Protocol and Interfaces

The mode of operation of the Identity providers will be those provided by SAML v2 for the
profile "Web Browser SSO" [133] . The two versions "SP-Initiated": "Redirect / POST binding"
and "POST / POST binding " must be provided. In these versions the authentication mechanism
is triggered by the service provider, which is directed to the Identity Provider in “Pull” mode.
The SAML authentication request (based on the construct <AuthnRequest>) can be submitted
by a Service Provider to the Identity Provider using the HTTP Redirect binding or http binding
POST. The SAML response (based on the <Response> construct) may be sent from the Identity
Provider to Service Provider only via HTTP POST binding.

The logical interface of the Identity Provider are described as follows:

• The IIDPUserInterface allows users to interact via web with the component through
User Agent under challenge authentication.

• The IAuthnRequest receives a SAML authentication requests.

• The IMetadataRetrieve allows the retrieval of Identity Provider’s metadata.

The logical interfaces of Service Provider are described as follows:

• The IAuthnResponse receives the SAML authentication responses.

• The IMetadataRetrieve allows the retrieval of Service Provider’s metadata.

• The IDSResponse receives feedback from the Discovery Service.

Single Sign-On Interaction

Figure 60 depicts the steps of a single sign-on process, which is further described as follows:

1. The user request access to a resource using the browser (User Agent).

2. This step is split in two: Firstly, the Service Provider send to the User Agent an au-
thentication request to be provided to the Identity Provider. Secondly, the User Agent
forward the authentication request to the Identity Provider. This interaction relies either
on HTTP Redirect or HTTP Post to transmit SAML’s AuthnRequest.

3. The Identity provider verifies the received request and, if necessary, challenges the user
for authentication.

4. The Identity Provider, with a successful authentication, prepares the Assertion with the
authentication statement to be sent to the Service Provider (additional attributes may be
present).

5. The Identity Provider replies to the User Agent returning the SAML Response with the
assertion created at Step 4 (via HTTP POST).

243

D4.1 – Assessment report on cryptographic technologies, protocols and mechanisms

Figure 60: SSO SP-Initiated Redirect/POST binding

6. The User Agent forwards the Response issued by the Identity Provider to the Service
Provider.

7. Finally, the initially requested resource can be supplied.

244

	Introduction
	The CREDENTIAL Project
	Scope of this Deliverable
	Relation to Other Deliverables
	Overview of Assessment Results
	Outline

	Assessment Methodology
	Fact Sheet Description
	High-Level Criteria

	Core Cryptographic Technologies
	Secure Data Sharing
	Attribute-Based Encryption vs. Proxy Re-Encryption
	Proxy Re-Encryption
	Fully Homomorphic Encryption

	Authentic Data Disclosure
	Malleable Signature Schemes
	Anonymous Credentials vs Redactable Signatures

	Section Conclusion

	Additional Cryptographic Technologies
	Authentication
	Access to Encrypted Data
	Searchable Encryption
	Private Information Retrieval
	Oblivious RAM
	Proofs of Retrievability and Provable Data Possession

	Other Technologies
	Unlinkable Pseudonyms
	Secret Sharing
	Verifiable Computing

	Section Conclusion

	Authentication to the Cloud
	Authentication Factors
	Authentication Technologies
	Evaluation Criteria
	Evaluation
	Evaluation Conclusion

	Underlying Technologies for Authentication
	Trusted Platform Module
	Trusted Execution Environment

	Section Conclusion

	Identity and Access Management Protocols
	Identity Protocols
	Fact Sheets
	Evaluation Criteria
	Evaluation
	Evaluation Conclusion

	Authorization Protocols
	Fact Sheets
	Evaluation Criteria
	Evaluation
	Evaluation Conclusion

	Policies
	Fact Sheets
	Evaluation Criteria
	Evaluation
	Evaluation Conclusion

	Cryptographic Protocols and APIs
	Fact Sheets
	Evaluation Criteria
	Evaluation
	Evaluation Conclusion

	Other Technologies
	Fact Sheet
	Evaluation
	Evaluation Conclusion

	Section Conclusion

	Pilot-Specific Technologies
	Overview of eGovernment Technologies
	Overview of eHealth Technologies
	Overview of eBusiness Technologies

	Conclusion
	Details for Core Cryptographic Technologies
	Proxy Re-Encryption
	Classical Proxy Re-Encryption
	Conditional Proxy Re-Encryption
	Certificate-Less Proxy Re-Encryption
	Certificate-Based Proxy Re-Encryption
	Proxy Re-Encryption with Keyword Search
	Properties of Proxy Re-Encryption Schemes

	Fully Homomorphic Encryption
	Malleable Signatures
	Redactable Signatures
	Blank Digital Signatures

	Anonymous Credentials
	Idemix

	Details for Additional Cryptographic Technologies
	Authentication
	TPASS

	Access to Encrypted Data
	Search on Encrypted Data
	Private Information Retrieval
	Proofs of Retrievability
	Provable Data Possession

	Other Technologies
	Verifiable Computing
	Unlinkable Pseudonyms
	Secret Sharing
	Remote Attestation

	Details for Authentication to the Cloud
	Authentication Technologies
	FIDO
	Initiative for Open AuTHentication (OATH)
	Mobile Connect
	Secure Quick Reliable Login (SQRL)
	Biometrics

	Underlying Technologies for Authentication
	TPM
	TEE

	Details for Identity and Access Management Protocols
	Identity Protocols
	OpenID Connect
	SAML

	Authorization Protocols
	OAuth
	UMA
	WS-Trust

	Policies
	WS-Policy / WS-SecurityPolicy
	XACML - eXtensible Access Control Markup Language

	Cryptographic Protocols and APIs
	W3C Web Crypto API
	KMIP – Key Management Interoperability Protocol

	Other Technologies
	SCIM

	Details for eGovernment Technologies
	CNS (Carta Nazionale dei Servizi)
	CSP (Cryptographic Service Provider)
	PKCS #11
	ISO 7816
	STORK/STORK 2.0 Framework
	eIDAS Interoperability Framework

	Details for eHealth Technologies
	Health Information Exchange
	Cross-Enterprise Document Sharing (XDS)
	Patient Identifier Cross-Referencing (PIX) & Patient Demographics Query (PDQ)
	Audit Trail and Node Authentication (ATNA)
	Cross-Enterprise User Assertion (XUA) & Cross-Enterprise User Assertion - Attribute Extension (XUA++)
	IHE Advanced Patient Privacy Consent (APPC)
	Document Digital Signature (DSG)
	Document Encryption (DEN)

	Clinical Content Representation
	Clinical Document Architecture (CDA)
	Fast Healthcare Interoperability Resources (FHIR)

	Outline

	Details for eBusiness Technologies
	PEC (Posta Elettronica Certificata)
	S/MIME
	SPID

